Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rekristallisationsmechanismus produziert spiralförmige Mikrostrukturen

09.06.2017

Forscher der TU Chemnitz, des Helmholtz-Zentrums Dresden-Rossendorf und des Leibniz-Institut IFW-Dresden entdecken selbstorganisierende, spiralförmige Mikrostrukturen

Kristallisation lässt sich nicht nur im größeren Maßstab in Form von Schneekristallen beobachten, sie spielt auch in vielen technologischen Bereichen eine fundamentale Rolle, darunter in der Halbleiterindustrie. Ihr Verständnis ist deshalb ein wichtiger Baustein für technologischen Fortschritt.


Rasterkraftmikroskopaufnahme der Topografie von logarithmisch kristallisiertem Germaniummangan. Der Kristallisationspfad lässt sich aufgrund der beobachteten Oberflächenstrukturen im Nachhinein rekons

TU Chemnitz, Helmholtz-Zentrums Dresden-Rossendorf, Leibniz-Institut IFW-Dresden

In einer aktuellen Veröffentlichung in dem angesehenen amerikanischen „Journal of Applied Physics“ beschreiben die Wissenschaftler von der Professur Materialsysteme der Nanoelektronik der Technischen Universität Chemnitz gemeinsam mit Forschern des Helmholtz-Zentrums Dresden-Rossendorf und des Leibniz-Institut IFW in Dresden einen neuen Typus der bereits seit längerer Zeit bekannten sogenannten „Explosivkristallisation“.

Der Begriff nimmt Bezug auf das reale Phänomen der Explosion, da auch hier gebundene Energie durch einen Zündfunken freigesetzt wird. Diese Form der Kristallisation betrifft amorphe, also ungeordnete, Materialien, die meist metastabil sind, das heißt vom energetischen Standpunkt aus eine höhere Energie aufweisen, aber aufgrund einer energetischen Barriere nicht direkt kristallisieren und sich damit in einen Zustand niedrigerer Energie umwandeln können. Hierzu bedarf es einer Initialzündung.

In der Untersuchung wurde eine Blitzlampe aktiviert, um einen starken Temperaturanstieg in einer dünnen Schicht Germaniummangan hervorzurufen. Hier hatten die Forscher bereits in einer anderen Untersuchung selbstorganisierende Strukturen gefunden. Kleine Störungen auf der Oberfläche nach dem Lichtimpuls verursachten sogenannte Hotspots, also Bereiche, welche durch erhöhte Energieaufnahme besonders stark erhitzt wurden und als Zündfunke für die darauffolgende Explosivkristallisation dienten.

Üblicherweise sind in diesen Fällen kreisförmige Ausdehnungen der kristallisierenden Bereiche zu erwarten. Anders jedoch im vorliegenden Materialsystem: „Es gab Zentren, von denen die Kristallisationsfront eine Vorzugsrichtung aufwies. Verantwortlich hierfür ist das Mangan, welches sich wahrscheinlich in einer extrem dünnen flüssigen Zone an der Kristallisationsfront zunehmend anreichert“, erklärt Dr. Danilo Bürger, Postdoc an der Professur Materialsysteme der Nanoelektronik.

Diese flüssige Zone mit erhöhter Mangankonzentration weise eine deutlich reduzierte Schmelztemperatur auf, sodass eine kleine vorgegebene richtungsweisende Störung auf der Oberfläche ausreichen könnt, um die gerichtete Kristallisation in Gang zu setzen.

Die Besonderheit der beobachteten Mikrostruktur liegt allerdings im Verlauf der nachfolgenden gerichteten Kristallisationsfront, deren „Ecken“ die spezielle Form der sogenannten logarithmischen Spirale beschreiben. Dieser Spiraltyp besitzt besondere Eigenschaften wie die sogenannte „Selbstähnlichkeit“. Das heißt, dass logarithmische Spiralen die ihr zugrundeliegende Struktur beim hinein-/hinauszoomen nicht ändern.

Logarithmische Strukturen sind auch aus der Natur bekannt, z.B. bilden Galaxien oder biologische Objekte wie Pflanzen oder Schnecken oftmals diese Strukturen aus. In der Physik der kondensierten Materie, in Unterscheidung zur Elementarteilchenphysik oder Atomphysik, ist die logarithmische Spirale allerdings ein äußerst seltenes Phänomen. Alles in allem ist für die Entstehung der logarithmischen Spirale ein sehr komplexes Zusammenspiel von Reaktions- und Diffusionsprozessen verantwortlich.

Weit vom Spiralzentrum entfernt hingegen breitet sich die Kristallisationsfront, wie von der Explosivkristallisation bekannt, kreisförmig aus. Dies legt die sehr gute Übereinstimmung der theoretisch berechneten und den sichtbaren Grenzverläufen zwischen zwei aufeinandertreffenden Kristallisationsfronten unterschiedlichen Ursprungs nahe. Das diese Art der selbstorganisierten Strukturbildung mittels Technologien, welche auch in der Halbleiterindustrie zum Einsatz kommen, so lange unentdeckt blieb, ist nach Meinung der Wissenschaftler aufgrund der besonderen Herstellungsparameter nicht ungewöhnlich, zeigt nun aber neue Forschungswege zum tieferen Verständnis von Kristallisationsprozessen auf.

Originalveröffentlichung:

Bürger et al., Journal of Applied Physics 121, 184901 (2017): http://dx.doi.org/10.1063/1.4983068

Weitere Informationen: Dr. Danilo Bürger, Professur Materialsysteme der Nanoelektronik der TU Chemnitz, E-Mail: danilo.buerger@etit.tu-chemnitz.de, Tel.: 0371 531 32889

Weitere Informationen:

https://www.tu-chemnitz.de/etit/nano/

Matthias Fejes | Technische Universität Chemnitz

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften