Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rekord bei Terahertzpuls-Erzeugung

13.02.2017

Einer Gruppe von Forschern der TU Wien und der ETH Zürich gelang es, ultrakurze Terahertz-Lichtpulse zu erzeugen. Diese nur wenige Pikosekunden langen Pulse sind hervorragend für spektroskopische Anwendungen geeignet und ermöglichen ultragenaue Frequenzmessungen.

Die einzigartigen Eigenschaften von Terahertzstrahlung macht sie sehr interessant für zahlreiche Anwendungen wie nicht-invasive Bildgebung in der Medizin oder Detektion von gefährlichen Stoffen. Terahertzwellen durchdringen viele Materialien, die für sichtbares Licht undurchsichtig sind. Im Vergleich zu Röntgenstrahlung sind sie auch ungefährlich für biologisches Gewebe.


Juraj Darmo, Dominic Bachmann und Karl Unterrainer (v.l.n.r) im Laserlabor des Photonik Instituts.

TU Wien


Darstellung eines breitbandigen Terahertzverstärkers, basierend auf einem Quantenkaskadenlaser.

TU Wien

Außerdem besitzen viele Substanzen einen molekularen Fingerabdruck im Terahertzbereich, wodurch sie mittels spektroskopischer Verfahren aufgespürt werden können. Eine effiziente Möglichkeit solche Terahertzwellen zu erzeugen sind sogenannte Quantenkaskadenlaser, welche in der Arbeitsgruppe von Prof. Karl Unterrainer am Institut für Photonik der TU Wien hergestellt und erforscht werden. Quantenkaskadenlaser bestehen aus einer genau definierten Abfolge von mehreren hundert, nur wenige Nanometer dicken, Halbleiterschichten.

Dieser besondere Aufbau ermöglicht es, die Energieniveaus, in denen sich die Elektronen in der Halbleiterstruktur aufhalten, frei zu wählen. Somit kann die Frequenz des ausgestrahlten Laserlichts angepasst und auf die gewünschte Anwendung zugeschnitten werden.

Ein breitbandiges „Laser-Sandwich“ generiert einen Licht-Kamm Diese Besonderheit, dass die Laserwellenlänge selbst bestimmt werden kann, erlaubt es mehrere Quantenkaskadenstrukturen mit unterschiedlichen Emissionsfrequenzen aufeinanderzustapeln, mit dem Ziel breitbandige Terahertzstrahlung zu erzeugen.

„Solche heterogene Aktive Zonen sind optimal geeignet, um breitbandige Terahertzverstärker zu realisieren und um ultrakurze Terahertzpulse zu erzeugen“, erklärt Dominic Bachmann vom Institut für Photonik. Gelingt es zusätzlich die diskreten Laserlinien miteinander zu koppeln, das heißt eine feste Phasenbeziehung zwischen den Lasermoden herzustellen, entsteht ein sogenannter Frequenzkamm. Mit einem Frequenzkamm kann die Absolutfrequenz des verwendeten Lichts sehr genau gemessen werden – essentiell für unzählige Anwendungen. Die Erfindung des Frequenzkamms hat die optische Metrologie geradezu revolutioniert und wurde 2005 mit dem Nobelpreis für Physik ausgezeichnet.

In den letzten vier Jahren wurde im EU-Projekt TERACOMB intensiv an einem auf Quantenkaskadenlaser basierenden Terahertz-Frequenzkamm geforscht. Unter der Leitung von Dr. Juraj Darmo vom Institut für Photonik gelang es dem Team aus internationalen Forschungsgruppen den ersten breitbandigen halbleiterbasierten Terahertz-Frequenzkamm zu realisieren.

Den Laser bei der Arbeit beobachten

Eine in der Gruppe von Prof. Unterrainer entwickelte Methode erlaubt es, interne Parameter von Quantenkaskadenlasern während des Laserbetriebs zu untersuchen. Die Technik beruht auf der zeitaufgelösten Spektroskopie, in der breitbandige Terahertzpulse die zu messende Probe durchdringen. Diese auf Femtosekunden-Laser basierte Technik ermöglicht es den vollständigen Informationsgehalt des Zeit- und Frequenz-Bereichs in einer einzigen Messung zu erfassen.

Dadurch gelang es den Forschern des Instituts für Photonik den optischen Gewinnkoeffizienten und die optische Dispersion in breitbandigen Terahertz-Quantenkaskadenlasern quantitativ zu bestimmen, sowie die komplexen Dynamiken besser zu verstehen. „Diese Erkenntnisse erlauben es, die Bandbreite der Laser weiter zu erhöhen und die Leistungsfähigkeit der Frequenzkämme zu verbessern“, erläutert Juraj Darmo.

Maßgeschneiderte Verluste

Ein bisher ungelöstes Problem bei Terahertz-Quantenkaskadenlasern war die Existenz von Laserlinien mit unterschiedlichen Ausbreitungsgeschwindigkeiten. Das Vorhandensein von Lasermoden mit höherer lateraler Ordnung führt dazu, dass die Intensität sehr inhomogen zwischen den Laserlinien verteilt wird, reduziert die nutzbare Bandbreite und verhindert die Entstehung eines Frequenzkamms.

Um zu verhindern, dass diese Moden anschwingen können, müssen die Verluste so stark erhöht werden, dass sie die Laserschwelle nicht erreichen. Durch das Hinzufügen eines maßgeschneiderten Seitenabsorbers an den Kanten des Laserresonators gelang es den Forschern, die höheren lateralen Moden vollständig zu unterdrücken, ohne die fundamentalen Moden relevant zu beeinflussen.

Dies führte zu einer Emissionsbandbreite, die sich über eine volle Oktave erstreckt, zu einer sehr homogenen Modenverteilung in den zentralen 700 GHz und einem Frequenzkamm mit einer Bandbreite von 440 GHz.

Außerdem ermöglichen die Seitenabsorber die Erzeugung von ultrakurzen Terahertzpulsen mit Pulsbreiten von weniger als 3 ps. Dies entspricht einem neuen Weltrekord von Quantenkaskadenlaser generierten Terahertz Pulsen. „Es war wirklich erstaunlich zu sehen, wie eine relativ kleine Anpassung des Wellenleiters eine derart immense Verbesserung bewirkt, erzählt Dominic Bachmann, der gerade seine Dissertation über breitbandige Quantenkaskadenlaser abgeschlossen hat.

Originalpublikationen
Bachmann et al., „Short pulse generation and mode control of broadband terahertz quantum cascade lasers“, Optica 3, 1087 (2016), DOI: 10.1364/OPTICA.3.001087.
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-3-10-1087

Bachmann et al., “Dispersion in a broadband terahertz quantum cascade laser”, Appl. Phys. Lett. 109, 221107 (2016), DOI: 10.1063/1.4969065.
http://aip.scitation.org/doi/full/10.1063/1.4969065

Bilderdownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/terahertzpuls

Weblinks: http://thzlabs.tuwien.ac.at/
http://www.teracomb.org/

Rückfragehinweis:
Dr. Dominic Bachmann
Technische Universität Wien
Institut für Photonic
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-38738
dominic.bachmann@tuwien.ac.at

Quantum Physics & Quantum Technologies ist – neben Computational Science & Engineering, Materials & Matter, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Erforscht werden mögliche Anwendungen von Quantenphänomenen. Diese reichen von fundamentalen Wechselwirkungen der Elementarteilchen über Strahlungsquellen für ultrakurze Photonenpulse bis hin zur Steuerung der Zustände einzelner Atome und damit zu Bauelementen für den Quantencomputer.

TU Wien - Mitglied der TU Austria

www.tuaustria.at

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

nachricht Treiber für Digitalisierung von Industrieanlagen: ABB, HPE und Rittal stellen Secure Edge Data Center vor
20.04.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics