Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raffinierte Miniaturen: IPP entwickelt Bolometer für ITER

08.01.2014
Der Auftrag zur Entwicklung eines wichtigen Messverfahrens für den internationalen Fusionstestreaktor ITER ging an das Max-Planck-Institut für Plasmaphysik (IPP) in Garching

Mit 4,8 Millionen Euro fördert die europäische ITER-Agentur „Fusion for Energy“ in den nächsten vier Jahren ein deutsches Forschungs- und Industrie-Konsortium unter Leitung des IPP.


Bolometer-Sichtlinien werden im Plasmagefäß der Fusionsanlage ASDEX Upgrade mit Hilfe eines Roboters vermessen.

Foto: V. Rohde, IPP

Ziel ist die Fortentwicklung so genannter Bolometer-Kameras, welche die vom ITER-Plasma abgegebene Wärme- und Röntgenstrahlung registrieren sollen. Ermöglicht hat den Auftrag eine mit nationalen Projektmitteln unterstützte Vorbereitungsphase, in der die Befähigung der Beteiligten für diese und weitere ITER-Aufgaben nachgewiesen wurde.

Das Messverfahren soll die vom ITER-Plasma abgegebene Wärme- und Lichtstrahlung vom Infrarot- bis in den Röntgenbereich registrieren und ihren Entstehungsort im Plasma bestimmen. Die Strahlungsleistung ist ein Teil der gesamten Energiebilanz des Plasmas. Ihre Kenntnis ist Voraussetzung für die Regelung des Plasmas oder die Einstellung bestimmter Betriebsweisen. Ziel der Fusionsforschung ist es – ähnlich wie die Sonne – aus der Verschmelzung von Atomkernen Energie zu gewinnen. Um das Fusionsfeuer zu zünden, muss in einem späteren Kraftwerk der Brennstoff, ein Wasserstoffplasma, in Magnetfeldern eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden.

Das Messprinzip eines Bolometers: Ein briefmarkengroßes Metallplättchen absorbiert die längs einer engen Sichtlinie aus dem Plasma kommende Strahlung und erwärmt sich dabei. Der elektrische Widerstand eines darunter liegenden Leiters ändert sich je nach Temperatur und ist daher ein direktes Maß für die Strahlungsleistung. Mittels zusätzlicher Rechnungen und Messdaten lässt sie sich räumlichen Punkten im Plasma zuordnen, sofern genügend viele Bolometer zur Verfügung stehen. So erfährt man exakt, welche Stelle im Plasma welche Leistung ausgesandt hat.

Dieses im IPP entwickelte und patentierte Messverfahren wird seit vielen Jahren erfolgreich eingesetzt. Für die Großanlage ITER, die erstmals ein brennendes Fusionsfeuer erzeugen soll, sind jedoch neue Anforderungen zu erfüllen: Anders als bisher müssen die Detektoren aufprallenden Fusionsneutronen standhalten und auch bei hohen Temperaturen bis 450 Grad Celsius zuverlässig arbeiten können.

Für diese Weiterentwicklung hat das IPP seit 2008 mit Fördermitteln des Bundesforschungsministeriums fruchtbare Kooperationen aufgebaut: So wurden, angelehnt an die bisherigen IPP-Entwürfe, am Institut für Mikrotechnik Mainz erste Prototypen entwickelt – galvanisch auf dünne Keramik-Membranen abgeschiedene Platinabsorber. Neutronen-Tests im Forschungsreaktor der Ungarischen Akademie der Wissenschaften sowie Prüfungen der spektralen Empfindlichkeit in Kooperation mit der Physikalisch-Technischen Bundesanstalt haben sie bereits bestanden. Hitzetests im IPP waren jedoch nur teilweise erfolgreich. Modellierungsrechnungen mit Unterstützung der Firma KRP Mechatec halfen daraufhin, den Entwurf passend zu ändern. Auch Alternativen für das Absorber-Material und dessen Aufhängung werden untersucht.

Das ITER-Plasma sollen später rund 500 Sichtlinien durchkreuzen und in verschiedenen Querschnittsebenen aus allen Winkeln beobachten. Die Absorber-Plättchen, die diese Strahlung auffangen, liegen tief in der Wand des Plasmagefäßes – am Ende langer Kanäle, die von engen Blenden abgedeckt sind. Denn je kleiner der Sichtwinkel ist, den der einzelne Detektor abtastet, desto genauer wird das Plasma abgebildet. Das große ITER-Plasma stellt auch hier wesentlich höhere Anforderungen als aktuelle Fusionsanlagen.

Um die erreichbare Genauigkeit zu prüfen, wurde im Rahmen einer Doktorarbeit eigens ein Roboterteststand aufgebaut und im Plasmagefäß der Garchinger Fusionsanlage ASDEX Upgrade geprüft. Aus allen Richtungen kann er einen Laserstrahl auf den Eintrittsspalt eines Bolometers richten. Die Messergebnisse halfen, den Blenden-Entwurf so zu verbessern, dass Streulicht und Reflexionen in der Kamera weitgehend unterdrückt werden. Vieles an Optik, Aufbau, Material und Elektronik bleibt noch zu optimieren, damit in vier Jahren ein vollständig dokumentierter, in den ITER-Entwurf integrierbarer Prototyp zur Verfügung steht.

Isabella Milch | Max-Planck-Institut
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kompakte Rangierfelder für RJ45-Module
25.09.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops