Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um Effizienzverlust von Zinkoxid-basierten Farbstoffsolarzellen aufgeklärt

13.04.2016

Um Sonnenenergie in Strom oder solare Brennstoffe umzuwandeln, benötigt man spezielle Materialsysteme. Zum Beispiel solche, die aus organischen und anorganischen dünnen Schichten bestehen. Bei der Umwandlung der Sonnenenergie spielen Prozesse an den Grenzflächen dieser Schichten eine entscheidende Rolle. Nun hat ein HZB-Team um Prof. Emad Aziz erstmals mit ultrakurzen Laserpulsen direkt beobachtet, wie sich zwischen den organischen Farbstoffmolekülen und einer Zinkoxid-Halbleiterschicht Grenzflächenzustände bilden, in denen Ladungsträger eingefangen werden. Dies erklärt, warum ZnO-Farbstoffsolarzellen aktuell hinter den Erwartungen zurückbleiben.

Die Ergebnisse sind im Rahmen einer Zusammenarbeit mit der australischen Monash-University am Joint Lab vom Helmholtz-Zentrum Berlin (HZB) und der Freien Universität Berlin (FU) entstanden und im Open Access Magazin von Nature, den Scientific Reports, online publiziert.


Das Bild zeigt, wie Sonnenlicht zunächst ein Farbstoffmolekül anregt und ein Elektron freisetzt. Das Elektron kann an der Grenzfläche zwischen Farbstoff- und ZnO-Halbleiterschicht eingefangen werden

HZB/Mario Borgwardt

Die Energie der Sonne in Strom oder auch solaren Wasserstoff umzuwandeln, gelingt mit einer ganzen Reihe von Materialien. Eine wichtige Klasse von organischen Solarzellen besteht zum Beispiel aus Farbstoffen, die auf dem Halbleitermaterial Titandioxid (TiO2) aufgetragen sind.

Dabei dienen die Farbstoffmoleküle als eine Art „Übersetzer“ für die Sonnenenergie. Sie fangen das Licht ein, wobei freie Ladungen entstehen, die dann im Titandioxid den Stromfluss ermöglichen. Allerdings ist TiO2 längst nicht optimal, Zinkoxid (ZnO) sollte aufgrund seiner Eigenschaften eigentlich viel besser als Elektrodenmaterial geeignet sein:

Denn in ZnO sind die Ladungsträger wesentlich mobiler, so dass sie nach der Ladungstrennung rascher abfließen sollten. Außerdem lassen sich mit ZnO auf einfache Weise Nanoarchitekturen herstellen, die das Sonnenlicht besonders effizient einfangen.

Entwicklung angeregter Zustände im Detail untersucht

Dennoch ist es bisher nicht gelungen, mit ZnO Solarzellen zu bauen, die besser sind als diejenigen auf TiO2. Ein Team um Emad Aziz hat nun erstmals die Ursache direkt beobachtet und im „Joint Ultrafast Dynamics Lab in Solutions and at Interfaces“ im Detail untersucht. Das Joint Lab wird gemeinsam vom HZB und der FU Berlin betrieben.

Es verfügt über eine Reihe modernster Laserinstrumente, darunter auch ein zeitaufgelöstes Photoelektronspektrometer, das ultrakurze XUV-Pulse von unter 45 Femtosekunden Dauer erzeugen kann. Diese ultrakurzen Lichtblitze ermöglichen es, sowohl die zeitliche als auch energetische Entwicklung angeregter Zustände in ultrakurzen Zeitabschnitten zu verfolgen.

Grenzflächenzustände als "Fallen" für die Ladungsträger identifiziert

„Unsere Messungen zeigen erstmals direkt, dass Ladungsträger durch Bildung eines Grenzflächenzustandes zwischen Farbstoff und Halbleiter an dessen Oberfläche eingefangen werden. Dadurch stehen sie nicht mehr unmittelbar als freie Ladungsträger zur Verfügung“, erklärt Mario Borgwardt, Doktorand im Team Aziz. Diese „eingefangenen“ Elektronen im Grenzflächenzustand bleiben länger an Ort und Stelle. Dadurch erhöht sich die Wahrscheinlichkeit, dass sie durch Rekombination wieder „verloren“ gehen. Dies reduziert den Wirkungsgrad der Solarzelle.

Die Proben für das Experiment hat Prof. Leone Spiccias Team von der Monash University zur Verfügung gestellt. Durch den Besuch von Spiccia im letzten Jahr im Zuge seines Helmholtz International Fellowship Awards der Helmholtz-Gemeinschaft ist eine fruchtbare Kooperation entstanden, die grundlegend zum Erfolg dieses Projekts beigetragen hat.

Hinweise für das Design von Energiematerialien

Emad Aziz erläutert die Bedeutung der Ergebnisse: „Die Arbeit führt zu einem besseren Verständnis der Prozesse an der Grenzfläche zwischen Farbstoffmolekül und Halbleiter. Wir haben damit verstanden, wie Farbstoff und Halbleitermaterial miteinander kommunizieren. Damit können wir nun Ansätze finden, diese Kommunikation gezielt zu verbessern. Das ist nicht nur für das Design von Farbstoffsolarzellen wichtig, sondern auch um Materialsysteme für die photokatalytische Herstellung von Wasserstoff entwickeln zu können, also für die Speicherung von Sonnenenergie in Form des Brennstoffs Wasserstoff.“

Die Ergebnisse sind in Scientific Reports 6, Article number: 24422 (2016) publiziert. doi:10.1038/srep24422
Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy. Mario Borgwardt, Martin Wilke, Thorsten Kampen, Sven Mähl, Manda Xiao, Leone Spiccia, Kathrin M. Lange, Igor Yu. Kiyan & Emad F. Aziz

Kontakt:
Prof. Dr. Emad Flear Aziz
E-Mail: emad.aziz@helmholtz-berlin.de

Mario Borgwardt
E-Mail: mario.borgwardt@helmholtz-berlin.de

HZB-Pressestelle
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de
Tel: 030/8062-43733

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14434&sprache=de&ty...
http://www.nature.com/articles/srep24422

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie