Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um Effizienzverlust von Zinkoxid-basierten Farbstoffsolarzellen aufgeklärt

13.04.2016

Um Sonnenenergie in Strom oder solare Brennstoffe umzuwandeln, benötigt man spezielle Materialsysteme. Zum Beispiel solche, die aus organischen und anorganischen dünnen Schichten bestehen. Bei der Umwandlung der Sonnenenergie spielen Prozesse an den Grenzflächen dieser Schichten eine entscheidende Rolle. Nun hat ein HZB-Team um Prof. Emad Aziz erstmals mit ultrakurzen Laserpulsen direkt beobachtet, wie sich zwischen den organischen Farbstoffmolekülen und einer Zinkoxid-Halbleiterschicht Grenzflächenzustände bilden, in denen Ladungsträger eingefangen werden. Dies erklärt, warum ZnO-Farbstoffsolarzellen aktuell hinter den Erwartungen zurückbleiben.

Die Ergebnisse sind im Rahmen einer Zusammenarbeit mit der australischen Monash-University am Joint Lab vom Helmholtz-Zentrum Berlin (HZB) und der Freien Universität Berlin (FU) entstanden und im Open Access Magazin von Nature, den Scientific Reports, online publiziert.


Das Bild zeigt, wie Sonnenlicht zunächst ein Farbstoffmolekül anregt und ein Elektron freisetzt. Das Elektron kann an der Grenzfläche zwischen Farbstoff- und ZnO-Halbleiterschicht eingefangen werden

HZB/Mario Borgwardt

Die Energie der Sonne in Strom oder auch solaren Wasserstoff umzuwandeln, gelingt mit einer ganzen Reihe von Materialien. Eine wichtige Klasse von organischen Solarzellen besteht zum Beispiel aus Farbstoffen, die auf dem Halbleitermaterial Titandioxid (TiO2) aufgetragen sind.

Dabei dienen die Farbstoffmoleküle als eine Art „Übersetzer“ für die Sonnenenergie. Sie fangen das Licht ein, wobei freie Ladungen entstehen, die dann im Titandioxid den Stromfluss ermöglichen. Allerdings ist TiO2 längst nicht optimal, Zinkoxid (ZnO) sollte aufgrund seiner Eigenschaften eigentlich viel besser als Elektrodenmaterial geeignet sein:

Denn in ZnO sind die Ladungsträger wesentlich mobiler, so dass sie nach der Ladungstrennung rascher abfließen sollten. Außerdem lassen sich mit ZnO auf einfache Weise Nanoarchitekturen herstellen, die das Sonnenlicht besonders effizient einfangen.

Entwicklung angeregter Zustände im Detail untersucht

Dennoch ist es bisher nicht gelungen, mit ZnO Solarzellen zu bauen, die besser sind als diejenigen auf TiO2. Ein Team um Emad Aziz hat nun erstmals die Ursache direkt beobachtet und im „Joint Ultrafast Dynamics Lab in Solutions and at Interfaces“ im Detail untersucht. Das Joint Lab wird gemeinsam vom HZB und der FU Berlin betrieben.

Es verfügt über eine Reihe modernster Laserinstrumente, darunter auch ein zeitaufgelöstes Photoelektronspektrometer, das ultrakurze XUV-Pulse von unter 45 Femtosekunden Dauer erzeugen kann. Diese ultrakurzen Lichtblitze ermöglichen es, sowohl die zeitliche als auch energetische Entwicklung angeregter Zustände in ultrakurzen Zeitabschnitten zu verfolgen.

Grenzflächenzustände als "Fallen" für die Ladungsträger identifiziert

„Unsere Messungen zeigen erstmals direkt, dass Ladungsträger durch Bildung eines Grenzflächenzustandes zwischen Farbstoff und Halbleiter an dessen Oberfläche eingefangen werden. Dadurch stehen sie nicht mehr unmittelbar als freie Ladungsträger zur Verfügung“, erklärt Mario Borgwardt, Doktorand im Team Aziz. Diese „eingefangenen“ Elektronen im Grenzflächenzustand bleiben länger an Ort und Stelle. Dadurch erhöht sich die Wahrscheinlichkeit, dass sie durch Rekombination wieder „verloren“ gehen. Dies reduziert den Wirkungsgrad der Solarzelle.

Die Proben für das Experiment hat Prof. Leone Spiccias Team von der Monash University zur Verfügung gestellt. Durch den Besuch von Spiccia im letzten Jahr im Zuge seines Helmholtz International Fellowship Awards der Helmholtz-Gemeinschaft ist eine fruchtbare Kooperation entstanden, die grundlegend zum Erfolg dieses Projekts beigetragen hat.

Hinweise für das Design von Energiematerialien

Emad Aziz erläutert die Bedeutung der Ergebnisse: „Die Arbeit führt zu einem besseren Verständnis der Prozesse an der Grenzfläche zwischen Farbstoffmolekül und Halbleiter. Wir haben damit verstanden, wie Farbstoff und Halbleitermaterial miteinander kommunizieren. Damit können wir nun Ansätze finden, diese Kommunikation gezielt zu verbessern. Das ist nicht nur für das Design von Farbstoffsolarzellen wichtig, sondern auch um Materialsysteme für die photokatalytische Herstellung von Wasserstoff entwickeln zu können, also für die Speicherung von Sonnenenergie in Form des Brennstoffs Wasserstoff.“

Die Ergebnisse sind in Scientific Reports 6, Article number: 24422 (2016) publiziert. doi:10.1038/srep24422
Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy. Mario Borgwardt, Martin Wilke, Thorsten Kampen, Sven Mähl, Manda Xiao, Leone Spiccia, Kathrin M. Lange, Igor Yu. Kiyan & Emad F. Aziz

Kontakt:
Prof. Dr. Emad Flear Aziz
E-Mail: emad.aziz@helmholtz-berlin.de

Mario Borgwardt
E-Mail: mario.borgwardt@helmholtz-berlin.de

HZB-Pressestelle
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de
Tel: 030/8062-43733

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14434&sprache=de&ty...
http://www.nature.com/articles/srep24422

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Netzspannung und Lastströme live und präzise im Blick
24.04.2018 | Karlsruher Institut für Technologie

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

24.04.2018 | HANNOVER MESSE

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics