Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Power-to-Gas läuft auch an kleinen Biogasanlagen

16.01.2013
Pilotversuch am Hessischen Biogas-Forschungszentrum zur direkten Methanisierung erfolgreich. IWES-Experten sparen komplizierten Prozessschritt ein und produzieren Gas mit über 90 % Methananteil.
Das Power-to-Gas-Verfahren läuft auch an kleineren Biogas-Anlagen zuverlässig und bietet ihnen neue Potentiale zur flexiblen Energieproduktion. Dies ist das Ergebnis eines Pilotversuchs, den das Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES) gemeinsam mit den Ländern Hessen und Thüringen am Hessischen Biogas-Forschungszentrum (HBFZ) in Bad Hersfeld durchgeführt hat.

Im Rahmen des Projektes haben die IWES-Experten mit der direkten Umwandlung des im Biogas enthaltenen Kohlendioxids in Methan eine neue Variante der Power-to-Gas-Technologie getestet: „Die direkte Methanisierung funktioniert dauerhaft und dies bei einer gleichbleibenden Gasqualität“, berichtete IWES-Institutsleiter Prof. Clemens Hoffmann bei der heutigen Vorstellung der Projektergebnisse. „Dies bringt uns bei der Herstellung und Nutzung von Biogas einen weiteren Schritt nach vorne“.

Der Institutsleiter verwies auf die wichtige Rolle, die Biogasanlagen im erneuerbaren Energiemix als Ausgleichsfaktor für die schwankende Erzeugung aus Windparks und Photovoltaik-Anlagen spielen. Die am HBFZ getestete Spielart von Power-to-Gas erschließe nicht nur einen weiteren Pfad zur Methangewinnung. Sie eröffne auch die Möglichkeit, Biogasanlagen in Zukunft flexibler und bedarfsgerechter zu betreiben.

Die vom IWES, vom Stuttgarter Zentrum für Sonnenenergie- und Wasserstoffforschung und der Solar Fuel GmbH entwickelte Power-to-Gas-Technologie macht es möglich, überschüssigen Strom aus erneuerbaren Quellen in speicherbares Methan umzuwandeln. „Hierzu kombinieren wir Elektrolyse und Methanisierung “, erklärte Jochen Bard, am IWES Abteilungsleiter für Energiewandler- und speicher, das Verfahren. Im ersten Schritt fließt der Strom in einen Elektrolyseur und spaltet dort Wasser in Sauer- und Wasserstoff. Im zweiten Schritt reagiert der so gewonnene Wasserstoff in einem speziellen Reaktor mit CO2 zu Methan. Dieses kann dann als synthetisches Gas im vorhandenen Gasnetz gespeichert, im Gaskraftwerk in Strom zurück verwandelt sowie als Kraftstoff oder zum Heizen direkt genutzt werden.

Eine erste Pilotanlage mit einer Leistung von 25 Kilowatt zeigt, dass das Verfahren in kleinem Maßstab funktioniert. Die in einem Container untergebrachte Anlage ist seit Oktober 2012 am HBFZ für Forschungszwecke im Einsatz. „Auch Biogas eignet sich hervorragend zur Methanisierung“, so Bard. Das in Biogasanlagen erzeugte Gemisch besteht zu zwei Dritteln aus Methan, zu einem Drittel aus Kohlendioxid und kleineren Mengen Wasser, Schwefelwasserstoff,

Stickstoff und anderen Spurengasen. Um es ins Erdgasnetz einspeisen oder für Erdgasfahrzeuge nutzen zu können muss es aufbereitet, vor allem entfeuchtet, entschwefelt und vom CO2 getrennt werden.

Den IWES-Experten ist es gelungen, das Kohlendioxid ohne Abspaltung direkt in Methan umzuwandeln und damit einen komplizierten Prozessschritt zu sparen. „Wir können auf diese Weise derzeit ein Gas mit einem stabilen Methananteil von mehr als 90 Prozent erzeugen“, berichtete der IWES-Bereichsleiter für Energiesystemtechnik, Bernd Krautkremer. Dieses Biomethan könne entweder zwischen gespeichert oder auch in den Biogasspeicher zurück geführt werden, um dort den Gesamtmethangehalt zu erhöhen. „Wir haben beide Möglichkeiten erfolgreich getestet“, sagte Krautkremer.

Das durch direkte Methansierung gewonnene Gas soll nicht ins Erdgasnetz eingespeist werden. Dadurch entfallen weitere technisch komplizierte und kostenintensive Anpassungsmaßnahmen wie die eichfähige Messung, die Druckerhöhung und die Konditionierung des Biomethans. Dies macht die Anwendung der neuen Power-to-Gas-Variante vor allem für kleinere Biogasanlagen mit einer Leistung von rund 250 Kilowatt attraktiv, die ihr Gas direkt verstromen.

Die Experten vom Fraunhofer IWES wollen den Prozess jetzt weiter optimieren und unter anderem Alternativen zur herkömmlichen biologischen Entschwefelung entwickeln, die für die direkte Methansierung nicht geeignet ist. Auch der eingesetzte Katalysator soll noch weiter getestet werden. „Das Potential der direkten Methanisierung ist groß, aber es liegt noch einiges an Forschungsarbeit vor uns, bevor wir an einen breiten Einsatz denken können“, erklärte IWES-Institutsleiter Hoffmann abschließend.

Weitere Informationen:

http://www.iwes.fraunhofer.de
http://www.iwes.fraunhofer.de/de/labore/hbfz.html
http://www.hmuelv.hessen.de/irj/HMULV_Internet?rid=HMULV_15/HMULV_Internet/nav/4e6/4e630711-8ff1-2701-be59-263b5005ae75,d26502cb-d441-4c31-79cd-aa2b417c0cf4,,,11111111-2222-3333-4444-100000005004%26_ic_uCon_zentral=d26502cb-d441-4c31-79cd-aa2b417c0cf4.htm&uid=4e630711-8ff1-2701-be59-263b5005ae75

http://www.thueringen.de/th8/tmlfun/aktuell/presse/69249/index.aspx

Uwe Krengel | Fraunhofer-Institut
Weitere Informationen:
http://www.iwes.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics