Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Power-to-Gas läuft auch an kleinen Biogasanlagen

16.01.2013
Pilotversuch am Hessischen Biogas-Forschungszentrum zur direkten Methanisierung erfolgreich. IWES-Experten sparen komplizierten Prozessschritt ein und produzieren Gas mit über 90 % Methananteil.
Das Power-to-Gas-Verfahren läuft auch an kleineren Biogas-Anlagen zuverlässig und bietet ihnen neue Potentiale zur flexiblen Energieproduktion. Dies ist das Ergebnis eines Pilotversuchs, den das Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES) gemeinsam mit den Ländern Hessen und Thüringen am Hessischen Biogas-Forschungszentrum (HBFZ) in Bad Hersfeld durchgeführt hat.

Im Rahmen des Projektes haben die IWES-Experten mit der direkten Umwandlung des im Biogas enthaltenen Kohlendioxids in Methan eine neue Variante der Power-to-Gas-Technologie getestet: „Die direkte Methanisierung funktioniert dauerhaft und dies bei einer gleichbleibenden Gasqualität“, berichtete IWES-Institutsleiter Prof. Clemens Hoffmann bei der heutigen Vorstellung der Projektergebnisse. „Dies bringt uns bei der Herstellung und Nutzung von Biogas einen weiteren Schritt nach vorne“.

Der Institutsleiter verwies auf die wichtige Rolle, die Biogasanlagen im erneuerbaren Energiemix als Ausgleichsfaktor für die schwankende Erzeugung aus Windparks und Photovoltaik-Anlagen spielen. Die am HBFZ getestete Spielart von Power-to-Gas erschließe nicht nur einen weiteren Pfad zur Methangewinnung. Sie eröffne auch die Möglichkeit, Biogasanlagen in Zukunft flexibler und bedarfsgerechter zu betreiben.

Die vom IWES, vom Stuttgarter Zentrum für Sonnenenergie- und Wasserstoffforschung und der Solar Fuel GmbH entwickelte Power-to-Gas-Technologie macht es möglich, überschüssigen Strom aus erneuerbaren Quellen in speicherbares Methan umzuwandeln. „Hierzu kombinieren wir Elektrolyse und Methanisierung “, erklärte Jochen Bard, am IWES Abteilungsleiter für Energiewandler- und speicher, das Verfahren. Im ersten Schritt fließt der Strom in einen Elektrolyseur und spaltet dort Wasser in Sauer- und Wasserstoff. Im zweiten Schritt reagiert der so gewonnene Wasserstoff in einem speziellen Reaktor mit CO2 zu Methan. Dieses kann dann als synthetisches Gas im vorhandenen Gasnetz gespeichert, im Gaskraftwerk in Strom zurück verwandelt sowie als Kraftstoff oder zum Heizen direkt genutzt werden.

Eine erste Pilotanlage mit einer Leistung von 25 Kilowatt zeigt, dass das Verfahren in kleinem Maßstab funktioniert. Die in einem Container untergebrachte Anlage ist seit Oktober 2012 am HBFZ für Forschungszwecke im Einsatz. „Auch Biogas eignet sich hervorragend zur Methanisierung“, so Bard. Das in Biogasanlagen erzeugte Gemisch besteht zu zwei Dritteln aus Methan, zu einem Drittel aus Kohlendioxid und kleineren Mengen Wasser, Schwefelwasserstoff,

Stickstoff und anderen Spurengasen. Um es ins Erdgasnetz einspeisen oder für Erdgasfahrzeuge nutzen zu können muss es aufbereitet, vor allem entfeuchtet, entschwefelt und vom CO2 getrennt werden.

Den IWES-Experten ist es gelungen, das Kohlendioxid ohne Abspaltung direkt in Methan umzuwandeln und damit einen komplizierten Prozessschritt zu sparen. „Wir können auf diese Weise derzeit ein Gas mit einem stabilen Methananteil von mehr als 90 Prozent erzeugen“, berichtete der IWES-Bereichsleiter für Energiesystemtechnik, Bernd Krautkremer. Dieses Biomethan könne entweder zwischen gespeichert oder auch in den Biogasspeicher zurück geführt werden, um dort den Gesamtmethangehalt zu erhöhen. „Wir haben beide Möglichkeiten erfolgreich getestet“, sagte Krautkremer.

Das durch direkte Methansierung gewonnene Gas soll nicht ins Erdgasnetz eingespeist werden. Dadurch entfallen weitere technisch komplizierte und kostenintensive Anpassungsmaßnahmen wie die eichfähige Messung, die Druckerhöhung und die Konditionierung des Biomethans. Dies macht die Anwendung der neuen Power-to-Gas-Variante vor allem für kleinere Biogasanlagen mit einer Leistung von rund 250 Kilowatt attraktiv, die ihr Gas direkt verstromen.

Die Experten vom Fraunhofer IWES wollen den Prozess jetzt weiter optimieren und unter anderem Alternativen zur herkömmlichen biologischen Entschwefelung entwickeln, die für die direkte Methansierung nicht geeignet ist. Auch der eingesetzte Katalysator soll noch weiter getestet werden. „Das Potential der direkten Methanisierung ist groß, aber es liegt noch einiges an Forschungsarbeit vor uns, bevor wir an einen breiten Einsatz denken können“, erklärte IWES-Institutsleiter Hoffmann abschließend.

Weitere Informationen:

http://www.iwes.fraunhofer.de
http://www.iwes.fraunhofer.de/de/labore/hbfz.html
http://www.hmuelv.hessen.de/irj/HMULV_Internet?rid=HMULV_15/HMULV_Internet/nav/4e6/4e630711-8ff1-2701-be59-263b5005ae75,d26502cb-d441-4c31-79cd-aa2b417c0cf4,,,11111111-2222-3333-4444-100000005004%26_ic_uCon_zentral=d26502cb-d441-4c31-79cd-aa2b417c0cf4.htm&uid=4e630711-8ff1-2701-be59-263b5005ae75

http://www.thueringen.de/th8/tmlfun/aktuell/presse/69249/index.aspx

Uwe Krengel | Fraunhofer-Institut
Weitere Informationen:
http://www.iwes.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen