Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Positronen als neues Werkzeug für die Forschung an Lithiumionen-Batterien: Löcher in der Elektrode

22.02.2017

Akkus, deren Kathode aus einer Mischung aus Nickel, Mangan, Kobalt und Lithium besteht, gelten derzeit als die leistungsfähigsten. Doch auch sie haben eine begrenzte Lebensdauer. Schon beim ersten Zyklus verlieren sie bis zu zehn Prozent ihrer Kapazität. Woran das liegt und was gegen den darauffolgenden schleichenden Kapazitätsverlust unternommen werden kann, hat ein interdisziplinäres Wissenschaftlerteam der Technischen Universität München (TUM) mit Hilfe von Positronen nun genauer erforscht.

So genannte NMC-Akkus, deren Kathoden aus einer Mischung aus Nickel, Mangan, Kobalt und Lithium bestehen, haben die herkömmlichen Lithium-Kobaltoxid-Akkus weitgehend vom Markt verdrängt. Sie sind billiger und sicherer und werden deshalb unter anderem für Elektro- und Hybridautos eingesetzt.


Rasterelektronenmikroskopische Aufnahme des untersuchten Elektrodenmaterials

Bild: Stefan Seidlmayer / TUM


Thomas Gigl und Stefan Seidlmayer an der Positronenquelle NEPOMUC

Foto: Wenzel Schürmann / TUM

Doch auch bei ihnen tragen nur wenig mehr als 50 Prozent der Lithium-Atome zur tatsächlichen Kapazität bei. Ließen sich bei der ersten Entladung der an der TU München untersuchten Elektroden noch 62 Prozent der Lithium-Atome aus dem Kristallgitter herauslösen, so kehren beim Wiederaufladen nur noch 54 Prozent zurück.

Bei den darauffolgenden Zyklen ist der Verlust zwar wesentlich geringer, jedoch sinkt die Kapazität schleichend immer weiter ab. Nach einigen Tausend Zyklen ist die Restkapazität dann so gering, dass der Akku unbrauchbar wird.

Eingefangene Positronen zeigen Löcher im Gitter

Untersuchungen anderer Gruppen zeigten, dass beim Laden offenbar nicht alle Lithium-Atome wieder in die passenden Lücken im Kristallgitter zurückfinden. Bisherige Methoden konnten allerdings nicht die dafür verantwortlichen atomaren Prozesse zeigen.

Die Lösung brachte, wie so oft, die interdisziplinäre Zusammenarbeit: Irmgard Buchberger, Mitarbeiterin am Lehrstuhl für Technische Elektrochemie der TU München wandte sich an Stefan Seidlmayer, der am Heinz Maier-Leibnitz Zentrum (MLZ) an der Forschungs-Neutronenquelle FRM II ebenfalls Akkutechnologien erforscht.

Er vermittelte den Kontakt zu Christoph Hugenschmidt, der am MLZ das Instrument NEPOMUC betreut. Es erzeugt Positronen, die Antiteilchen der Elektronen, mit denen sich gezielt nach Löchern in Kristallgittern fahnden lässt.

„Als extrem kleine und hoch bewegliche Teilchen können Positronen durch Materialien hindurch fliegen. Treffen sie auf ein Elektron, so enden sie auf der Stelle in einem Energieblitz, finden sie eine leere Stelle im Kristallgitter, überleben sie deutlich länger“, erläutert Markus Reiner, der die Versuche am Instrument NEPOMUC durchführte.

Da die Positronen für kurze Zeit in den leeren Gitterplätzen gefangen sind bevor sie schließlich doch zerstrahlen, lassen sich mit der Positronen-Annihilationsspektroskopie genannten Methode genaue Rückschlüsse auf die lokale Umgebung ziehen – und dies mit einer sehr hohen Empfindlichkeit, denn es lassen sich Fehlstellenkonzentrationen von bis zu 1:10 Millionen detektieren.

Gezielte Materialentwicklung

Die Studie zeigt eindeutig, dass beim Wiederaufladen verbleibende „Löcher“ im Gitter des Kathodenmaterials mit dem irreversiblen Kapazitätsverlust einhergehen und diese Blockade auf die mangelhafte Befüllung der Löcher im Kathodenmaterial zurückzuführen ist.

„Nun sind wir als Chemiker wieder an der Reihe“, sagt Prof. Hubert Gasteiger, Inhaber des Lehrstuhls für Technische Elektrochemie. „Mit gezielter Modifikation des Kathodenmaterials können wir nun nach Möglichkeiten suchen, diese Barriere zu umgehen.“

„Für die Batterieforschung ist die Garchinger Forschungs-Neutronenquelle ein extrem hilfreiches Instrument“, sagt Ralph Gilles, der am FRM II die Messungen für das Batterieforschungsprojekt ExZellTUM koordiniert. „Mit Neutronen können wir insbesondere kleine Atome wie das Lithium gut sehen, sogar durch die Metallhülle hindurch, bei laufendem Betrieb. Mit den Positronen haben wir nun eine weitere Möglichkeit erschlossen, die Prozesse besser zu verstehen und damit weiter verbessern zu können.“

Die Forschungsarbeiten wurden unterstützt aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmen des Projekts ExZellTUM. Auch der Betrieb des für die Studie genutzten Coincident Doppler-Broadening Spectrometers wird aus Mitteln des BMBF unterstützt.

Publikation:

S. Seidlmayer, I. Buchberger, M. Reiner, T. Gigl, R. Gilles, H. A. Gasteiger and C. Hugenschmidt, “First-cycle defect evolution of Li1−xNi1/3Mn1/3Co1/3O2 lithium ion battery electrodes investigated by positron annihilation spectroscopy", Journal of Power Sources 336, 224-230 (2016). DOI-Nr.: 10.1016/j.jpowsour.2016.10.050 http://www.sciencedirect.com/science/article/pii/S0378775316314422

Kontakt:

PD Dr. Christoph Hugenschmidt
Technische Universität München
Positronenphysik
Lichtenbergstr. 1, 85747 Garching, Germany
Tel.: +49 89 289 14609 – E-Mail: Christoph.Hugenschmidt@frm2.tum.de
Web: http://www.sces.ph.tum.de/research/positron-physics/

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33767/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie