Photovoltaik: Neues Ätzverfahren für Silizium-Dünnschicht-Solarzellen

Rasterelektronenmikroskop-Aufnahme: Anpassung der Oberflächentextur durch elektrochemisches Ätzen und anschließendes chemisches Ätzen. Quelle: Forschungszentrum Jülich

Etwa ein Drittel des Wirkungsgrads von Silizium-Dünnschicht-Solarzellen geht auf die Lichtsteuerung innerhalb der Zelle zurück. Die Siliziumschicht, die das Licht in Strom umwandelt, ist bei diesem Zellentyp nur etwa einen Tausendstel Millimeter dick.

Das vereinfacht die Herstellung, führt aber auch dazu, dass Sonnenlicht bei einem einfachen Durchgang nur unvollständig aufgenommen wird.

Durch raue Oberflächen der Kontaktschichten an Vorder- und Rückseite lässt sich der Wirkungsgrad deutlich verbessern. Mit ihrer rauen Oberfläche reflektieren und streuen sie das Licht, so dass es in einem flacheren und damit günstigeren Winkel von Innen auf die Oberfläche zurückfällt.

Im Idealfall wird das eingefangene Licht auf diese Weise so lange zwischen der lichtdurchlässigen Zinkoxidschicht vorne und der stark reflektierenden Rückseite hin und her geworfen, bis es vollständig absorbiert ist. 

Üblicherweise kommen zum Aufrauen der Kontaktschichten rein chemische Ätzverfahren mit Salz- oder Flusssäure zum Einsatz. Es entstehen winzige kraterähnliche Strukturen. Mit bloßem Auge wirken sie leicht milchig.

Wissenschaftler des Jülicher Instituts für Energie- und Klimaforschung (IEK-5) haben in einem erfolgreich abgeschlossenen Projekt der Deutschen Forschungsgemeinschaft nun einen Weg erschlossen, mit dem sich die hervorgerufenen Zufallsmuster auch gezielt beeinflussen lassen. 

Sie kombinierten das klassische Verfahren mit einem sogenannten elektrochemischen Ätzverfahren, bei dem zusätzlich eine elektrische Spannung zwischen Probe und Lösung angelegt wird. Die Reihenfolge der Schritte wirkt sich auf die sich ausbildende Oberflächentextur aus und lässt sich zur Anpassung der charakteristischen Merkmale nutzen.

Darüber hinaus zeigte sich, dass sich durch das elektrochemische Ätzen weitere, feine Strukturen überlagern, die die Durchlässigkeit des Frontkontakts im nahen Infrarotbereich verbessern – sodass mehr Sonnenlicht in die Zelle gelangt.

DFG-Projekt (Kennzeichen PU 447/1): http://gepris.dfg.de/gepris/projekt/172969985 

Institut für Energie- und Klimaforschung, Bereich Photovoltaik (IEK-5): http://www.fz-juelich.de/iek/iek-5/DE/Home/home_node.html

Media Contact

Erhard Zeiss Forschungszentrum Jülich

Weitere Informationen:

http://www.fz-juelich.de

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer