Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017

Forscher der Universität Straßburg und CNRS (Frankreich) haben in Zusammenarbeit mit der Universität Mons (Belgien), dem Max-Planck-Institut für Polymerforschung (Deutschland) und der Technischen Universität Dresden (Deutschland) eine neuartige supramolekulare Strategie entwickelt, mit deren Hilfe sich einstellbare 1D-periodische Potenziale zur Selbstorganisation von organischen ad hoc-Bausteinen auf Graphen realisieren lassen. Diese öffnen den Weg zur Umsetzung hybrider organisch-anorganischer Mehrschichtmaterialien mit einzigartigen elektronischen und optischen Eigenschaften. Die Ergebnisse wurden nun in Nature Communications veröffentlicht.

Vertikale Stapel unterschiedlicher zweidimensionaler (2D-) Kristalle wie Graphen, Bornitrid usw., die durch schwache Van der Waals-Kräfte zusammengehalten werden, werden üblicherweise als „Van der Waals-Heterostrukturen“ bezeichnet.


Berechnetes differentielles elektrisches Potential, induziert durch ein supramolekulares Gitter von MBB-2 auf Graphen. Das supramolekulare Gitter wird der Klarheit überlagert. Das elektrische Potential wird periodisch moduliert, mit negativen Werten im Bereich unterhalb der Molekülköpfe. Kohlenstoffatome sind grau dargestellt, Wasserstoff in Weiß, Stickstoff in Rot, Fluor in hellblau und Chlor in Grün. Lohe

Solche anspruchsvollen mehrschichtigen Strukturen können als vielseitige Plattform für die Untersuchung verschiedener Phänomene im Nanometerbereich verwendet werden. Insbesondere erzeugt die mechanische Überlagerung der 2D-Kristalle 2D-periodische Potentiale, die dem System unkonventionelle physikalische und chemische Eigenschaften verleihen.

Hier hat ein Team europäischer Forscher einen supramolekularen Ansatz angewandt, um selbstorganisierende organische Molekülgitter mit einer kontrollierten Geometrie und atomarer Präzision auf Graphen zu bilden, was 1D-periodische Potentiale in den resultierenden organisch-anorganischen Hybrid-Heterostrukturen hervorruft. Zu diesem Zweck wurden molekulare Bausteine sorgfältig entworfen und synthetisiert.

Diese sind einerseits mit einem langen aliphatischen Schwanz ausgestattet, der die Selbstorganisation und die Periodizität des Potentials steuert, außerdem besitzen sie eine photoreaktive Diazirinkopfgruppe, deren Dipolmoment das Oberflächenpotential des darunter liegenden Graphenblättchens moduliert.

Bei Bestrahlung mit ultraviolettem Licht vor der Abscheidung auf Graphen wird die Diazirineinheit gespalten und eine reaktive Carben-Spezies gebildet. Letztere ist anfällig für die Reaktion mit Lösungsmittelmolekülen, was zu einer Mischung von neuen Verbindungen mit unterschiedlichen Funktionalitäten führt.

Mit Hilfe von Rastertunnelmikroskopie (STM) wurde die nanoskalierte Anordnung der supramolekularen Gitter auf Graphit- und Graphen-Oberflächen charakterisiert, welche die Periodizität und Geometrie der induzierten potenziale bestimmt. Die Graphen-basierten Feldeffekt-Bauelemente wurden dann einer elektrischen Charakterisierung unterzogen, um den Effekt von unterschiedlichen selbst-assemblierten organischen Schichten auf die elektrischen Eigenschaften des 2D Materials zu bestimmen.

Computersimulationen erlauben es, die Wechselwirkung des molekularen Zusammenbaus mit Graphen zu begreifen. Weiterhin zeigte eine theoretische Analyse, dass die Effekte der Dotierung gänzlich auf die Anordnung der elektrischen Dipole in den Kopfgruppen zurückzuführen ist. Schließlich konnte aus einem supramolekularen Gitter, das nach UV-Bestrahlung des molekularen Bausteins in einem anderen Lösungsmittel hergestellt wurde, ein periodisches Potential mit der gleichen Geometrie, aber einer anderen Intensität erzeugt werden.

Auf diese Weise konnten die Forscher nachweisen, dass organische supramolekulare Gitter geeignet sind, um kontrollierbare 1D-periodische Potentiale auf der Oberfläche von Graphen zu erzeugen. Interessanterweise können Periodizität, Amplitude und Signatur der induzierten Potentiale vorprogrammiert und durch sorgfältiges molekulares Design angepasst werden.

Dieser supramolekulare Bottom-up-Ansatz kann erweitert und auf andere anorganische 2D-Materialien wie Übergangsmetall-Dichalkogenide angewendet werden, die den Weg zu komplexeren mehrschichtigen Van-der-Waals-Heterostrukturen ebnen. Diese Erkenntnisse sind von großer Bedeutung für die Realisierung von organisch-anorganischen Hybridmaterialien mit kontrollierbaren strukturellen und elektronischen Eigenschaften mit beispiellosen elektrischen, magnetischen, piezoelektrischen und optischen Funktionalitäten.


Referenz:
„Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene“
Marco Gobbi, Sara Bonacchi, Jian X. Lian, Yi Liu, Xiao-Ye Wang, Marc-Antoine Stoeckel, Marco A. Squillaci, Gabriele D’Avino, Akimitsu Narita, Klaus Müllen, Xinliang Feng, Yoann Olivier, David Beljonne, Paolo Samorì & Emanuele Orgiu
Nature Communications, 2017, 8, 14767
DOI: 10.1038/ncomms14767

Informationen für Journalisten:
Dr. Martin R. Lohe
cfaed Lehrstuhl für Molekulare Funktionsmaterialien, TU Dresden
Industry Project Coordinator
Tel.: +49 (0) 351 463-40405 oder -43255
E-Mail: martin.lohe@tu-dresden.de

Matthias Hahndorf
cfaed Communications Officer
Tel.: +49 (0) 351 463-42847
E-mail: matthias.hahndorf@tu-dresden.de

cfaed
Zum Exzellenzcluster für Mikroelektronik der Technischen Universität Dresden gehören elf Forschungsinstitute, darunter die Technische Universität Chemnitz sowie zwei Max-Planck-Institute, zwei Fraunhofer-Institute, zwei Leibniz-Institute und das Helmholtz-Zentrum Dresden-Rossendorf. Auf neun verschiedenen Pfaden forschen rund 300 Wissenschaftler nach neuartigen Technologien für die elektronische Informationsverarbeitung. Sie verwenden dabei innovative Materialien wie Silizium-Nanodrähte, Kohlenstoff-Nanoröhren oder Polymere. Außerdem entwickeln sie völlig neue Konzepte, wie den chemischen Chip oder Herstellungsverfahren durch selbstassemblierende Strukturen, bspw. DNA-Origami. Ziele sind zudem Energieeffizienz, Zuverlässigkeit und das reibungslose Zusammenspiel der unterschiedlichen Bauelemente. Darüber hinaus werden biologische Kommunikationssysteme betrachtet, um Inspirationen aus der Natur für die Technik zu nutzen. Dieser weltweit einzigartige Ansatz vereint somit die erkenntnisgetriebenen Naturwissenschaften und die innovationsorientierten Ingenieurwissenschaften zu einer interdisziplinären Forschungsplattform in Sachsen. www.cfaed.tu-dresden.de

Kim-Astrid Magister | Technische Universität Dresden

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie