Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Chips reduzieren Internet-Energieverbrauch

10.03.2010
Wirtschaft und Informationsgesellschaft sind auf die schnelle Internet-Kommunikation angewiesen. Zwar rasen die Daten bereits als Licht codiert durch Glasfasern, doch verarbeitet werden sie elektronisch. Diese Übersetzungsarbeit an der Nahtstelle kostet Zeit und teure Energie.

Das von KIT-Wissenschaftlern koordinierte Projekt SOFI zielt deshalb darauf ab, die Optik auf der selben Art von Chips zu integrieren, wie sie seit langem in der Halbleiterindustrie verwendet wird. Die EU fördert das Projekt von sieben Partnern im 7. Rahmenprogramm mit insgesamt 2,5 Millionen Euro.

Ziel des im Januar angelaufenen Projekts SOFI (Silicon-Organic hybrid Fabrication platform for Integrated circuits) sind Lichtwellenleiter und elektrooptische Modulatoren, die sich durch die Verwendung von Silizium preiswert in Masse fertigen lassen. Durch die Miniaturisierung, die durch Siliziumwellenleiter möglich wird, kann viel bei der sonst notwendigen Verstärkung von elektrischen Signalen gespart werden, wodurch der Stromverbrauch sinkt. Und durch das blitzschnelle Schalten der Lichtinformationen können die Telekommunikationsbetreiber auch mehr Daten über eine Glasfaser schicken: Sie müssen keine weiteren Kabel verlegen. Das vom Institut für Photonik und Quantenelektronik (IPQ) des KIT unter Leitung von Professor Dr. Jürg Leuthold erarbeitete Design lässt eine Signalverarbeitung erwarten, "die mit über 100 Gigabit pro Sekunde die doppelte Übertragungsrate heutiger, vergleichbarer Technologien besitzt, bei einem Energieaufwand von nur fünf Femtojoule pro Bit". Dies ist rund ein Tausend Mal weniger Energie als in heutigen Systemen aufgewendet werden muss.

Weltweit arbeitet die Forschung auf Hochtouren an der Vereinigung von Optik und Elektronik auf einem Chip. Die damit verbesserte Energieeffizienz ist hochwillkommen: Der Anteil des Kohlendioxid-Ausstoßes allein der Informations- und Kommunikationsindustrie beträgt zwei Prozent, hat Gartner errechnet. Und nach einer Fraunhofer-Studie verbrauchen Produktion und Nutzung von ITK rund zehn Prozent des Stroms in Deutschland, mit steigender Tendenz wegen der boomenden Internet-Kommunikation.

"Um Daten auf ein Lichtsignal zu packen, könnte man einfach eine Laserdiode an- und ausschalten, was aber nicht die schnellste Möglichkeit darstellt", erklärt Dietmar Korn, ein Mitarbeiter von Professor Leuthold. "Um schneller zu sein, modulieren wir die Phase des Lichts." Der Trick: fließt Licht durch bestimmte Kristalle und es wird ein elektrisches Feld angelegt, so ändert sich der Brechungsindex des Materials - die Geschwindigkeit des Lichts lässt sich manipulieren und damit seine Phase modulieren. Den optischen Chips öffnet sich auch jenseits der Telekommunikation eine Perspektive: Statt die riesigen Rechnerkomplexe der Wirtschaftsunternehmen und Supercomputer-Betreiber mit Kupferkabeln zu verknüpfen, bietet sich hier die Optoelektronik als energiesparsamere Alternative an.

Das EU-Projekt verfolgt einen ebenso pragmatischen wie ambitionierten Ansatz: "Wir übernehmen das mit dem teuren Lithiumniobat funktionierende Prinzip und übertragen es auf das kostengünstige Silizium", erläutert Leuthold. "Silizium hat einen hohen Brechungsindex und es lassen sich Wellenleiter in feineren Strukturen herstellen - das Bauelement ist also deutlich kleiner." Und es verbraucht sehr wenig Energie, denn werden die Elektronen sehr nahe an den Wellenleiter herangebracht, so lassen sie sich mit sehr geringer Spannung steuern - das elektronische Signal braucht keine Verstärkung mehr. Mit einem einzigen Modulator aus Silizium soll so eine Bandbreite von 100 Gigahertz erreicht werden. Um die Übertragungsrate weiter zu steigern, werden mehrere der Modulatoren nach einem komplizierten Schema gleichzeitig verschaltet.

Die Funktionsfähigkeit des Konzepts wird in harter Ingenieursarbeit bewiesen. So sind für Chips, die auch Licht leiten, spezielle Wafer aus Silizium mit einer Oxidschicht erforderlich. Und es müssen verschiedene organische Materialien auf ihre Tauglichkeit hin untersucht werden. SOFI vereint deshalb die Besten Europas in den jeweiligen Disziplinen: Die Strukturierung der Chips übernimmt das belgische Institut IMEC, das auch für Unternehmen Kleinserien produziert. Wegen ihrer Erfolg versprechenden Materialien sind Rainbow Photonics, CUDOS und GigOptix-Helix mit im Boot. Die italienische Gruppe Selex Sistemi Integrati vertritt die Anwenderseite und das griechische Forschungslabor AIT denkt die Einsatzfelder vor. "Die EU gibt nur Geld für Forschung mit einem bleibenden Effekt aus", stellt Projektkoordinator Leuthold klar. "Das AIT entwirft deshalb Szenarien, wie Bauelemente mit welchen Eigenschaften zu kombinieren und welche Spezifikationen dafür einzuhalten sind."

Neben der Administration verantwortet das IPQ auch das Design der Wellenleiter, also die Formgebung und die kritische Verschaltung der einzelnen Modulatoren. Zudem werden im Forschungsprozess entstehende Bauelemente gemessen und bewertet. Auch die Endabnahme findet in Karlsruhe statt: Im Systemlabor des IPQ werden die Chips unter Praxisbedingungen gestestet - und damit in die Weltrekordjagd um Übertragungsgeschwindigkeiten geschickt.

Drei Gründe nennt Professor Leuthold, weshalb SOFI beim Design und der Implementierung ultraschneller und energieeffizienter Modulatoren erfolgreich sein wird: "Erstens sind wir hoch motiviert, weil wir uns der Wichtigkeit der Arbeit bewusst sind. Zweitens profitiert das Projekt von jahrelanger Vorarbeit. Und drittens zieht das Konsortium die für einen Durchbruch erforderliche kritische Masse an Expertise zusammen."

Weitere Informationen finden Sie unter:
http://www.sofi-ict.eu
Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung - Lehre - Innovation.

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.kit.edu
http://www.sofi-ict.eu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Simulation von Energienetzwerken für Strom, Gas und Wärme
19.09.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht MathEnergy: Mathematische Schlüsseltechniken für Energienetze im Wandel
19.09.2017 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie