Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

OLED zum Strahlen bringen

02.05.2013
Bildschirme aus organischen Leuchtdioden versprechen ungeahnte Möglichkeiten. Doch oft verhindern hohe Produktionskosten den breiten Einsatz. Eine neue Art der Fertigung spart nicht nur Kosten, sondern verbessert auch die Strahlkraft der OLED.

Die Zeiten der guten alten Röhre sind längst vorbei. Laut Statistischem Bundesamt besaß schon 2011 fast jeder zweite Deutsche Haushalt einen Flachbildfernseher. Die Frage ist jedoch, wie lange unsere wenige Zentimeter schmalen Flimmerkisten den Zusatz »flach« überhaupt noch verdienen.


Mikrodisplays sind kaum größer als das menschliche Auge. Ein neues günstiges Verfahren lässt sie jetzt deutlich heller strahlen. (© Fraunhofer COMEDD)

Rigo Herold von der Fraunhofer-Einrichtung für Organik, Materialien und Elektronische Bauelemente COMEDD jedenfalls denkt bereits in ganz anderen Dimensionen: »2008 haben erste Hersteller Displays vorgestellt, die weniger als einen Millimeter dünn sind.« Die Technologie, die hinter den besonders schlanken Mattscheiben steckt, heißt OLED. Die Abkürzung steht für »Organic Light Emitting Diode«, zu Deutsch: »organische Leuchtdiode«.

»OLED leuchten von selbst und kommen im Gegensatz zu den heute gängigen Flüssigkristallbildschirmen ohne Hintergrundbeleuchtung aus. Dadurch wird es künftig möglich sein, sehr dünne und gleichzeitig flexibel biegbare Displays herzustellen«, erklärt Herold, der beim COMEDD für »IC- und System-Design« zuständig ist. Was man bisher lediglich aus Science-Fiction-Streifen kennt, könnte also in absehbarer Zeit auch unser alltägliches Fernseherlebnis verändern: Bildschirme dünn wie Papier, aufgebracht auf Kleidung, Vorhängen oder gar Fenstern.

Doch die Technologie steckt nach wie vor in den Kinderschuhen. Neben der geringen Lebensdauer verhindern bislang sehr hohe Anschaffungspreise einen breiten Durchbruch. »Organische Leuchtdioden zu produzieren, ist nach wie vor sehr teuer. Großflächige OLED-Fernsehbildschirme gibt es deswegen aktuell noch nicht zu kaufen. Die Technologie kommt momentan vor allem bei sehr kleinen Bildschirmgrößen von wenigen Quadratzentimetern zum Einsatz. Beispiele sind die ViewFinder von Digitalkameras oder – noch kleiner – von Handy-Beamern und Datenbrillen«, beschreibt Herold den Stand der Technik. Zusammen mit seinen Kollegen forscht er an neuen Herstellungsmethoden für Mikrodisplays.

Subpixel direkt auf Mikrodisplays auftragen

Aktuell ist den Forschern hier ein wichtiger Durchbruch gelungen: Zusammen mit der VON ARDENNE Anlagentechnik GmbH entwickeln sie eine Technologie, um die kleinen OLED-Bildschirme ohne Farbfilter zu produzieren. Deren Einsatz war bisher nötig, da die roten, grünen und blauen Subpixel, die für die Darstellung eines farbigen Bilds notwendig sind, bisher nicht direkt auf die Elektrode aufgetragen werden konnten. »Die Sub-pixel der kleinen Displays sind üblicherweise etwa 8 Quadratmikrometer groß. Die herkömmliche Technik ließ es jedoch nur zu, Einheiten von größer als 50 Quadratmikrometer zu bearbeiten« stellt Herold die zu meisternde Herausforderung dar.

Um diese Problematik zu lösen, haben die Wissenschaftler eine spezielle Technologie des Partnerunternehmens VON ARDENNE eingesetzt. Diese erlaubt es, organische Schichten unter Wärme gezielt lokal verdampfen zu lassen. Dabei lassen sich Flächen bearbeiten, die kleiner als 10 Quadratmikrometer sind. »Um die Technologie für die OLED-Mikrodisplays zu nutzen, haben wir den gesamten Fertigungsprozess neu konzipiert. Es ist somit möglich, die roten, grünen und blauen Farbpixel direkt aufzubringen. Der Einsatz des Farbfilters ist nicht mehr nötig und es ist möglich, 100 Prozent des emittierten Lichts nutzen. Auch der Herstellungsprozess wird günstiger«, so Herold. Der Farbfilter unterdrückt bisher die Selbststrahlkraft der OLEDs, so dass nur circa 20 Prozent des emittierten Lichts genutzt werden können. Verantwortlich dafür sind zwei negative Effekte des verwendeten Filters: Zum einen unterdrückt sie jeweils zwei der drei Farbbereiche eines OLED-Subpixels, zum anderen dunkelt sie als zusätzliche – über den OLEDs angebrachte – Schicht das erzeugte Licht automatisch ab.

Smartphones halten länger durch

Doch die OLED strahlen nicht nur heller, der neue Produktionsprozess ist auch günstiger. Farbfilter sind sehr teuer zu fertigen. Sie müssen je nach Anwendung speziell designt sein, aus geeigneten Materialien bestehen und richtig montiert werden. Verrutscht der Filter zum Beispiel, kann sich das negativ auf die Bildqualität auswirken. »Schlussendlich profitiert auch der Konsument: Wir alle wissen, dass unsere mobilen Geräte wie Smartphones und Digitalkameras täglich viel Energie verbrauchen. Je weniger für die farbige Darstellung auf den Displays verloren geht, desto länger halten unsere Akkus fürs Telefonieren, Surfen oder Fotografieren«, schließt Herold.

Dr.-Ing.RigoHerold | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Mai/oled-zum-strahlen-bringen.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Dünnschichtphotovoltaik: ZSW-Technologie erobert den internationalen Markt
24.01.2017 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)

nachricht IT-Kühlung: So schaffen Kleinbetriebe den Sprung in die IT-Profiliga
23.09.2016 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie