Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Noch dünnere Solarzellen mit Nanoteilchen?

07.04.2014

Nanostrukturen könnten dafür sorgen, dass mehr Licht in die aktive Schicht von Solarzellen gelenkt wird, so dass der Wirkungsgrad steigt.

Prof. Dr. Martina Schmid (HZB und FU) hat nun genau gemessen, wie unregelmäßig verteilte Silber-Partikel die Lichtausbeute verändern. Sie zeigte, dass die Nanoteilchen über ihre elektromagnetischen Nahfelder miteinander wechselwirken, so dass lokale „Hot Spots“ entstehen, wo das Licht besonders stark konzentriert wird.


Topographie der Oberfläche sowie die lokalen optischen Anregungen. Die Aufnahme zeigt mehrere „Hot spots“, die durch Wechselwirkungder Nanoteilchen mit dem Licht und auch untereinander stehen. Bild: HZB/CalTech


Die Silber-Nanoteilchen sind unregelmäßig geformt und zufällig auf der Oberfläche verteilt, zeigt diese Raster-Elektronen-mikroskopie-Aufnahme. Bild: HZB

Die Arbeit wurde von den Europhysics News, dem Magazin der Europäischen Physikalischen Gesellschaft, als Highlight eingestuft und weist den Weg für das gezielte Design solcher Nanostrukturen.

Selbst bei Dünnschichtsolarzellen möchte man noch Material und damit Kosten sparen. So bestehen zum Beispiel Chalkopyrit-Zellen (CIGS) teilweise aus seltenen Elementen wie Indium und Gallium. Macht man die aktive Schicht jedoch sehr dünn, absorbiert sie zu wenig Licht und der Wirkungsgrad sinkt. Nanostrukturen könnten das Licht im aktiven Material einfangen und so die Effizienz erhöhen. Diese Idee verfolgt Prof. Dr. Martina Schmid, die am HZB die Nachwuchsgruppe NanooptiX leitet und an der FU eine Juniorprofessur hat. „Unser Ziel ist es, Nanostrukturen so zu optimieren, dass sie gezielt bestimmte Wellenlängen des Sonnenspektrums in die Zelle hineinstreuen.“

Unregelmäßig verteilte Nanopartikel
Eine Option dafür sind einfache Nanostrukturen aus Metall-Partikeln, die sich selbst ausbilden, wenn man einen dünnen Metallfilm aufbringt und mit Wärme behandelt. Dafür beschichtete Martina Schmid zunächst ein Glassubstrat mit einem extrem dünnen Silberfilm (20 nm), den sie anschließend einer Wärmebehandlung unterzog. Dadurch bildeten sich unregelmäßige Silberpartikel mit Durchmessern um die 100 Nanometer.

Mit der „Lichtspitze“ über die Probe
Wie solche zufällig verteilten Nanopartikel den Lichteinfall auf eine darunterliegende Solarzelle beeinflussen, untersuchte Martina Schmid mit Kollegen am California Institute of Technology (CalTech). Sie nutzten dafür eine besonders empfindliche Methode, der Rasternahfeld-Mikroskopie (SNOM): Dabei wird eine extrem feine Spitze über die Probe geführt, die zum einen wie bei der Rasterkraftmikroskopie die Topographie ermittelt, gleichzeitig aber auch durch einen winzigen Kanal in der Spitze die Probe lokal belichtet und optische Anregungen (Plasmonen) in den Nanopartikeln erzeugt. Diese optischen Anregungen können entweder das Licht wie gewünscht in die Solarzelle hineinkoppeln - oder aber im Gegenteil in Wärme verwandeln, wodurch es für die Solarzelle verloren geht.

Es kommt auf die Nachbarschaft an: Wechselwirkungen bestimmen über die Streuung des Lichts
Die Messungen zeigten, dass es zwischen dicht benachbarten unregelmäßig verteilten Nanopartikeln starke Wechselwirkungen geben kann, was lokal zu „Hot Spots“ führt. „Während in den dunklen Regionen Licht verstärkt absorbiert und in Wärme umwandelt wird, zeigen die hellen „Hot-Spots“, wo die elektromagnetischen Felder von Nanopartikeln besonders stark wechselwirken. Dadurch könnte die Energieumwandlung in der Solarzelle erhöht werden“, erklärt Martina Schmid.

Letztendlich entstehen Bereiche sehr starker, aber auch Bereiche vergleichsweise schwacher Felder. Allerdings ist es schwierig, einen klaren Zusammenhang zwischen dem Auftreten dieser Hot Spots und bestimmten Nanopartikeln herzustellen. „Die Teilchen wirken über ihre elektromagnetischen Nahfelder aufeinander ein, das ist deutlich komplexer als bislang vermutet. Wir müssen nun herausfinden, wie wir gezielt die gewünschten Feldverteilungen erzeugen können“, erklärt Martina Schmid. Diese Fragen wird sie am HZB und an der Freien Universität Berlin zusammen mit der Arbeitsgruppe um Prof. Dr. Paul Fumagalli weiter untersuchen.

Originalpublikation: M. Schmid, J. Grandidier and H. A. Atwater, “Scanning near-field optical microscopy on dense random assemblies of metal nanoparticles“, J. Opt., 15, 125001 (2013)

Nachtrag: Prof. Dr. Martina Schmid leitet die Nachwuchsgruppe für Nanooptische Konzepte für die Photovoltaik (NanooptiX). Sie hat eine Junior-Professur an der Freien Universität Berlin. Die experimentellen Arbeiten fanden während ihrer Postdoc-Zeit am renommierten California Institute of Technology Caltech in der Gruppe von Prof. Harry Atwater statt.

Vom 14. – 17. April findet in Brüssel die Photonics Europe Konferenz der Society for Optics and Photonics statt, wo Patrick Andrae, ein Doktorand aus der Nachwuchsgruppe, einen Vortrag über das Thema hält.

Weitere Informationen:

Prof. Dr. Martina Schmid
Nachwuchsgruppe Nanooptische Konzepte
Tel.: +49 (0)30-8062-43243
martina.schmid@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13959&sprache=de&ty...
http://daedalus.caltech.edu/publication/pubs/Schmid_JournalofOptics.pdf
http://www.europhysicsnews.org/index.php?option=com_content&view=article&...

Dr. Ina Helms | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entschlüsseln, wie Pflanzen ihre Blätter abwerfen

09.12.2016 | Biowissenschaften Chemie

"Wächter des Genoms": Forscher aus Halle liefern neue Einblicke in die Struktur des Proteins p53

09.12.2016 | Biowissenschaften Chemie

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie