Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronen klären Alterungsprozess in Lithiumionen-Akkus: Ewige Jugend für Batterien?

17.11.2015

Ein wichtiges Problem von Lithiumionen-Akkus ist ihre Alterung. Sie mindert die erzielbare Speicherkapazität erheblich. Bisher ist nur wenig darüber bekannt, wie es dazu kommt. Wissenschaftler des Lehrstuhls für Technische Elektrochemie und der Forschungs-Neutronenquelle (FRM II) der Technischen Universität München (TUM) sind der Aufklärung der Ursachen in ihren neuesten Experimenten ein gutes Stück näher gekommen.

Lithiumionen-Akkus mit Graphit-Anode sind eine relative junge Entwicklung. Erst 1989 wurden sie zum Patent angemeldet und sind seit 1991 in elektrischen Geräten im Einsatz. Seither haben sie einen weltweiten Siegeszug angetreten und dienen heute nicht nur in elektrischen Kleingeräten sondern auch Elektroautomobilen, Flugzeugen und sogar in Lokomotiven. Zukünftig sollen sie auch als
große Zwischenspeicher mit Megawatt-Kapazitäten dienen.


Dr. Stefan Seidlmayer mit Dr. Petra Kudejová am Instrument PGAA des FRM II

Bild: Claudia Niiranen / TUM


Irmgard Buchberger am Röntgen-Diffraktometer

Bild: Andreas Battenberg / TUM

Einen ersten starken Kapazitätsverlust erleidet ein Akku mit Graphit-Anode bereits beim ersten Ladezyklus der Zelle, dem Formierungsschritt. Hier verliert er bis zu 10 Prozent seiner Kapazität. Bei jedem weiteren Lade- und Entladevorgang sinkt die Kapazität weiter, wenn auch nur geringfügig. Auch bei bloßer Lagerung, vor allem bei Temperaturen über der Raumtemperatur, geht weitere Kapazität verloren.

Für diese Alterungseffekte hat die Physik zwar mehrere Ideen, aber noch keine endgültige Erklärung gefunden. TUM-Wissenschaftler des Lehrstuhls für Technische Elektrochemie und aus dem FRM II sind dem in ihren neuesten Experimenten ein gutes Stück näher gekommen.

Spurensuche mit Röntgenstrahlung und Neutronen

Um den Alterungsmechanismus zu verstehen und die Gründe dafür herauszufinden, kombinierten die TUM-Wissenschaftler elektrochemische Untersuchungen mit so unterschiedlichen Messmethoden wie Röntgenstreuung, Impedanzmessungen und Prompte Gamma-Aktivierungsanalyse (PGAA).

Mit diesen analysierten sie das Verhalten von Akkus mit Graphit-Anode und Nickel-Mangan-Cobalt-Kathode, sogenannte NMC-Zellen, bei verschiedenen Temperaturen. NMC-Zellen sind beliebt in der Elektromobilität, denn sie besitzen eine hohe Kapazität und halten theoretisch Ladespannungen von bis zu knapp fünf Volt aus. Bei Spannungen über 4,4 Volt nimmt jedoch die Alterung stark zu.

Mit Hilfe der Röntgenstreuung untersuchten die Wissenschaftler den Verlust an aktivem Lithium über mehrere Ladezyklen. Impedanzmessungen der Akkuzellen dienten dazu, den zunehmenden Widerstand zu erfassen. Die Aktivierungsanalyse mit Neutronen schließlich half, die extrem geringen Mengen an abgeschiedenem Übergangsmetall auf den Graphitelektroden sicher zu bestimmen.

Mechanismen für den Kapazitätsverlust

Ursache für den deutlichen Kapazitätsverlust beim Formierungsschritt ist der Aufbau einer Passivierungsschicht an der Anode. Diese verbraucht aktives Lithium, schützt jedoch danach den Elektrolyten vor Zersetzung an der Anode.

Für den Kapazitätsverlust bei laufendem Betrieb fand die Forschergruppe zwei wesentliche Mechanismen: Das aktive Lithium in der Zelle wird durch verschiedene Nebenreaktionen nach und nach verbraucht und steht damit nicht mehr zur Verfügung. Der Prozess ist stark temperaturabhängig: Bei 25ºC ist die Wirkung noch relativ gering und wird bei 60ºC recht hoch.

Beim Laden und Entladen der Zellen bei erhöhter Ladespannung (4,6 V) kommt es hingegen zu einem starken Anwachsen des Zellwiderstandes. Die auf der Anode abgeschiedenen Übergangsmetalle erhöhen die Leitfähigkeit der Passivierungsschicht für Elektronen und führen damit zu verstärkter Zersetzung des Elektrolyten.

Wege zu besseren Lithiumionen-Akkus

Nach dem Prinzip von Versuch und Irrtum fanden die Batteriehersteller bereits gute Verhältnisse von Elektrodenmaterial und Lithiummenge. „Mit den von uns gewonnenen Erkenntnissen lassen sich nun die Einzelprozesse gezielt weiter verbessern“, sagt Irmgard Buchberger, Doktorandin am Lehrstuhl für Technische Elektrochemie der TU München. „Möglich sind hier beispielsweise Additive, mit denen der Aufbau der Passivierungsschicht verbessert werden kann oder Modifikationen der Kathodenoberfläche.“

Die Arbeiten wurden unterstützt mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmen des Projekts ExZellTUM. Die Prompte Gamma Aktivierungsanalyse wurde in Kooperation mit dem Heinz Maier-Leibnitz Zentrum (MLZ) am Instrument PGAA der Forschungs-Neutronenquelle FRM II der Technischen Universität München durchgeführt.

Publikation:

I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, and H. A. Gasteiger; Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance; Journal of The Electrochemical Society, 162, A2737 (2015); DOI: 10.1149/2.0721514jes

Kontakt:

Prof. Dr. Hubert Gasteiger
Technische Universität München
Lehrstuhl für Technische Elektrochemie
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13679
E-Mail: hubert.gasteiger@tum.de

Weitere Informationen:

http://www.tec.ch.tum.de/index.php?id=278
http://jes.ecsdl.org/content/162/14/A2737.abstract

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten