Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronen klären Alterungsprozess in Lithiumionen-Akkus: Ewige Jugend für Batterien?

17.11.2015

Ein wichtiges Problem von Lithiumionen-Akkus ist ihre Alterung. Sie mindert die erzielbare Speicherkapazität erheblich. Bisher ist nur wenig darüber bekannt, wie es dazu kommt. Wissenschaftler des Lehrstuhls für Technische Elektrochemie und der Forschungs-Neutronenquelle (FRM II) der Technischen Universität München (TUM) sind der Aufklärung der Ursachen in ihren neuesten Experimenten ein gutes Stück näher gekommen.

Lithiumionen-Akkus mit Graphit-Anode sind eine relative junge Entwicklung. Erst 1989 wurden sie zum Patent angemeldet und sind seit 1991 in elektrischen Geräten im Einsatz. Seither haben sie einen weltweiten Siegeszug angetreten und dienen heute nicht nur in elektrischen Kleingeräten sondern auch Elektroautomobilen, Flugzeugen und sogar in Lokomotiven. Zukünftig sollen sie auch als
große Zwischenspeicher mit Megawatt-Kapazitäten dienen.


Dr. Stefan Seidlmayer mit Dr. Petra Kudejová am Instrument PGAA des FRM II

Bild: Claudia Niiranen / TUM


Irmgard Buchberger am Röntgen-Diffraktometer

Bild: Andreas Battenberg / TUM

Einen ersten starken Kapazitätsverlust erleidet ein Akku mit Graphit-Anode bereits beim ersten Ladezyklus der Zelle, dem Formierungsschritt. Hier verliert er bis zu 10 Prozent seiner Kapazität. Bei jedem weiteren Lade- und Entladevorgang sinkt die Kapazität weiter, wenn auch nur geringfügig. Auch bei bloßer Lagerung, vor allem bei Temperaturen über der Raumtemperatur, geht weitere Kapazität verloren.

Für diese Alterungseffekte hat die Physik zwar mehrere Ideen, aber noch keine endgültige Erklärung gefunden. TUM-Wissenschaftler des Lehrstuhls für Technische Elektrochemie und aus dem FRM II sind dem in ihren neuesten Experimenten ein gutes Stück näher gekommen.

Spurensuche mit Röntgenstrahlung und Neutronen

Um den Alterungsmechanismus zu verstehen und die Gründe dafür herauszufinden, kombinierten die TUM-Wissenschaftler elektrochemische Untersuchungen mit so unterschiedlichen Messmethoden wie Röntgenstreuung, Impedanzmessungen und Prompte Gamma-Aktivierungsanalyse (PGAA).

Mit diesen analysierten sie das Verhalten von Akkus mit Graphit-Anode und Nickel-Mangan-Cobalt-Kathode, sogenannte NMC-Zellen, bei verschiedenen Temperaturen. NMC-Zellen sind beliebt in der Elektromobilität, denn sie besitzen eine hohe Kapazität und halten theoretisch Ladespannungen von bis zu knapp fünf Volt aus. Bei Spannungen über 4,4 Volt nimmt jedoch die Alterung stark zu.

Mit Hilfe der Röntgenstreuung untersuchten die Wissenschaftler den Verlust an aktivem Lithium über mehrere Ladezyklen. Impedanzmessungen der Akkuzellen dienten dazu, den zunehmenden Widerstand zu erfassen. Die Aktivierungsanalyse mit Neutronen schließlich half, die extrem geringen Mengen an abgeschiedenem Übergangsmetall auf den Graphitelektroden sicher zu bestimmen.

Mechanismen für den Kapazitätsverlust

Ursache für den deutlichen Kapazitätsverlust beim Formierungsschritt ist der Aufbau einer Passivierungsschicht an der Anode. Diese verbraucht aktives Lithium, schützt jedoch danach den Elektrolyten vor Zersetzung an der Anode.

Für den Kapazitätsverlust bei laufendem Betrieb fand die Forschergruppe zwei wesentliche Mechanismen: Das aktive Lithium in der Zelle wird durch verschiedene Nebenreaktionen nach und nach verbraucht und steht damit nicht mehr zur Verfügung. Der Prozess ist stark temperaturabhängig: Bei 25ºC ist die Wirkung noch relativ gering und wird bei 60ºC recht hoch.

Beim Laden und Entladen der Zellen bei erhöhter Ladespannung (4,6 V) kommt es hingegen zu einem starken Anwachsen des Zellwiderstandes. Die auf der Anode abgeschiedenen Übergangsmetalle erhöhen die Leitfähigkeit der Passivierungsschicht für Elektronen und führen damit zu verstärkter Zersetzung des Elektrolyten.

Wege zu besseren Lithiumionen-Akkus

Nach dem Prinzip von Versuch und Irrtum fanden die Batteriehersteller bereits gute Verhältnisse von Elektrodenmaterial und Lithiummenge. „Mit den von uns gewonnenen Erkenntnissen lassen sich nun die Einzelprozesse gezielt weiter verbessern“, sagt Irmgard Buchberger, Doktorandin am Lehrstuhl für Technische Elektrochemie der TU München. „Möglich sind hier beispielsweise Additive, mit denen der Aufbau der Passivierungsschicht verbessert werden kann oder Modifikationen der Kathodenoberfläche.“

Die Arbeiten wurden unterstützt mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmen des Projekts ExZellTUM. Die Prompte Gamma Aktivierungsanalyse wurde in Kooperation mit dem Heinz Maier-Leibnitz Zentrum (MLZ) am Instrument PGAA der Forschungs-Neutronenquelle FRM II der Technischen Universität München durchgeführt.

Publikation:

I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, and H. A. Gasteiger; Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance; Journal of The Electrochemical Society, 162, A2737 (2015); DOI: 10.1149/2.0721514jes

Kontakt:

Prof. Dr. Hubert Gasteiger
Technische Universität München
Lehrstuhl für Technische Elektrochemie
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13679
E-Mail: hubert.gasteiger@tum.de

Weitere Informationen:

http://www.tec.ch.tum.de/index.php?id=278
http://jes.ecsdl.org/content/162/14/A2737.abstract

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht SmartMeter analysieren mit Algorithmen den Stromverbrauch
01.12.2016 | Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS

nachricht Energiehybrid: Batterie trifft Superkondensator
01.12.2016 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie