Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material ermöglicht ultradünne Solarzellen

04.08.2014

An der TU Wien gelang es, zwei unterschiedliche Halbleitermaterialien zu kombinieren, die jeweils aus nur drei Atomlagen bestehen. Dadurch ergibt sich eine vielversprechende neue Struktur für Solarzellen.

Durchsichtige, hauchdünne, biegsame Solarzellen könnten bald Wirklichkeit werden. An der TU Wien gelang es Thomas Müller und seinen Mitarbeitern Marco Furchi und Andreas Pospischil, eine neuartige Halbleiterstruktur aus zwei ultradünnen Atomschichten herzustellen, die sich ausgezeichnet für den Bau von Solarzellen eignet.


Das Schichtsystem der Solarzelle: innen die beiden Halbleiter, darüber und darunter befinden sich elektrische Kontakte. TU Wien

Schon vor einigen Monaten war es an der TU Wien gelungen, eine ultradünne Schicht des photoaktiven Kristalls Wolframdiselenid zu produzieren. Durch die erfolgreiche Kombination mit einer zweiten Schicht aus Molybdändisulfid entstand nun ein Material, das großflächig als Solarzelle einsetzbar ist. Das Forschungsteam erhofft sich, damit eine neue Solarzellentechnologie zu begründen.

Zweidimensionale Schichten

Ultradünne Materialien, die nur aus einer oder wenigen Atomlagen bestehen, sind in der Materialwissenschaft derzeit ein blühendes Hoffnungsgebiet. Begonnen hat es mit Graphen, das aus einer einzelnen Lage von Kohlenstoff-Atomen besteht. Wie auch zahlreiche andere Forschungsgruppen auf der Welt hat auch der Elektrotechniker Thomas Müller und sein Team am Institut für Photonik der TU Wien durch die Arbeit mit Graphen herausgefunden, wie man mit ultradünnen Schichten umgeht, sie bearbeitet und verbessert. Dieses Wissen lässt sich nun auch auf andere Materialien übertragen.

„Solche zweidimensionalen Kristalle haben oft völlig andere elektronische Eigenschaften als eine dickere, dreidimensionale Version desselben Materials“, erklärt Thomas Müller. Seinem Team gelang es ihm nun erstmals, zwei verschiedene ultradünne Halbleiterschichten aneinanderzufügen und ihre Eigenschaften zu untersuchen.

Zwei Schichten mit unterschiedlichen Aufgaben

Wolframdiselenid ist ein Halbleiter, der aus drei Atomschichten besteht. In der Mitte befindet sich eine Lage von Wolfram-Atomen, die oberhalb und unterhalb der Schicht durch Selen-Atome verbunden sind. „Dass Wolframdiselenid geeignet ist, elektrischen Strom aus Licht zu erzeugen, konnten wir bereits vor einigen Monaten zeigen“, sagt Thomas Müller. Allerdings müsste man beim Bau einer Solarzelle aus reinem Wolframdiselenid in Mikrometer-engen Abständen winzige Elektroden in das Material einbauen. Durch die Kombination mit einem weiteren Material (Molybdändisulfid, das ebenso aus drei Atomlagen besteht) ist das nun nicht mehr nötig. Somit lässt sich das Schichtsystem als großflächige Solarzelle einsetzen.

Wenn Licht auf ein photoaktives Material fällt, dann werden einzelne Elektronen von ihrem Platz gelöst. Übrig bleibt ein bewegliches Elektron und ein Loch an der Stelle, wo sich das Elektron vorher befunden hat. Sowohl das Elektron als auch das Loch kann im Material herumwandern, zum Stromfluss können beide allerdings nur dann beitragen, wenn sie voneinander getrennt werden, sodass sie sich nicht wieder miteinander vereinen.

Um diese Rekombination von negativ geladenen Elektronen mit positiv geladenen Löchern zu verhindern, kann man entweder Elektroden verwenden, über die man die Ladungsträger absaugt, oder man benutzt dafür eine zweite Materialschicht. „Die Löcher bewegen sich im Wolframdiselenid, die Elektronen hingegen wandern über das Molybdändisulfid ab“, sagt Thomas Müller. Damit ist die Rekombinations-Gefahr gebannt.

Um diesen Effekt zu ermöglichen, müssen die Energien der Elektronen in den beiden Schichten optimal angeglichen werden, was im Experiment durch ein elektrostatisches Feld geschieht. Florian Libisch und Prof. Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien konnten mit Computersimulationen berechnen, wie sich die Energie der Elektronen in den beiden Materialien ändert und bei welchen Spannungen eine optimale Ausbeute an elektrischer Leistung zu erwarten ist.

Atom an Atom: enger Kontakt durch Hitze

„Eine der größten technischen Herausforderungen war es, die beiden Materialien atomar flach aufeinander aufzubringen“, sagt Thomas Müller. „Wenn sich zwischen den beiden Schichten noch andere Moleküle verstecken, sodass kein direkter Kontakt gegeben ist, dann funktioniert die Solarzelle nicht.“ Gelungen ist dieses Kunststück schließlich, indem man beide Schichten zunächst in Vakuum ausheizte und dann in gewöhnlicher Atmosphäre zusammenfügte. Wasser zwischen den beiden Lagen konnte durch nochmaliges Ausheizen aus dem Schichtsystem entfernt werden.

Das neue Material lässt einen großen Teil des Lichts durch, der absorbierte Anteil wird in elektrische Energie umgewandelt. Man könnte es etwa auf Glasfassaden einsetzen, wo es Licht durchlassen und trotzdem Strom erzeugen würde. Weil es nur aus wenigen Atomlagen besteht, ist das Material extrem leicht (300 m2 des Films wiegen etwa ein Gramm) und sehr flexibel. Um eine höhere Energieausbeute auf Kosten reduzierter Transparenz zu erreichen arbeitet das Team gegenwärtig daran, mehr als zwei Schichten aufeinander zu stapeln.

Rückfragehinweis:
Prof. Thomas Müller
Institut für Photonik
Technische Universität Wien
Gusshausstraße 27-29, 1040 Wien
T: +43-1-58801-38739
thomas.mueller@tuwien.ac.at

Weitere Informationen:

http://pubs.acs.org/doi/abs/10.1021/nl501962c Originalpublikation
http://arxiv.org/ftp/arxiv/papers/1403/1403.2652.pdf frei zugängliches Paper auf arxiv

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: Atom Atomlagen Elektroden Elektronen Energie Glasfassaden Graphen Licht Material Photonik Schicht Schichtsystem Solarzelle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Linearpotentiometer LRW2/3 - Höchste Präzision bei vielen Messpunkten
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht Neues 100 kW-Wechselrichtermodul für B6-Standard halbiert Gewicht und Volumen
17.05.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie