Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues 20-kW-System mit Hochtemperatur-Brennstoffzellen

06.09.2012
Blockheizkraftwerk der nächsten Generation im Dauertest

Jülicher Forscher haben ein neues Demonstrationssystem für Blockheizkraftwerke mit oxidkeramischen Brennstoffzellen (engl. Solid Oxide Fuel Cell; SOFC) in Betrieb genommen. Solche Anlagen können dezentral Strom und Wärme für Wohnhäuser und Industriegebäude produzieren – mit einem deutlich höheren Gesamtwirkungsgrad als große Kraftwerke.


Design der 20-kW-Anlage: Alle Teile im Hochtemperaturbereich sind nach dem in Jülich entwickelten, integrierten Konzept ohne Rohre mit Flachdichtungen kompakt verbunden. Quelle: Forschungszentrum Jülich


Das neue Jülicher 20-kW-Demonstrationssystem für Blockheizkraftwerke mit oxidkeramischen Brennstoffzellen (engl. Solid Oxide Fuel Cell, SOFC). Quelle: Forschungszentrum Jülich

Das neue Jülicher 20-kW-System bietet die Möglichkeit, neben Erdgas auch regenerativ erzeugten Wasserstoff umzusetzen. Es ist ohne Rohrverbindungen im Hochtemperaturbereich aufgebaut und bringt weltweit erstmalig Zellstapel mit einer Einzelleistung von 5 kW zum Einsatz, mit denen sich gut auch größere Anlagenleistungen realisieren lassen.

Die zentrale Stromerzeugung in großen Kraftwerken ist mit deutlichen Verlusten verbunden, weil die Abwärme oft ungenutzt bleibt. In einem Blockheizkraftwerk (BHKW), das den Strom vor Ort produziert, lässt sich die freigesetzte Wärme dagegen zum Heizen verwenden. So kann die eingesetzte Energie fast vollständig genutzt werden. Konventionelle Anlagen dieser Art erzeugen den Strom mit Hilfe von Gasmotoren. Noch effizienter ist es aber, den Strom auf elektrochemischem Weg zu gewinnen – mit Brennstoffzellen, wie sie am Forschungszentrum Jülich entwickelt werden. Die Technologie bietet außerdem eine interessante Option für die Energieversorgung der Zukunft. Mit ihr lässt sich nicht nur Erdgas, sondern auch Wasserstoff verstromen, der großtechnisch aus überschüssigem regenerativem Strom erzeugt und anschließend gespeichert wurde.

„Das neue Demonstrationssystem ist ein wichtiger Schritt hin zum Einsatz von oxidkeramischen Brennstoffzellen in der dezentralen Energieversorgung“, erklärt Arbeitsgruppenleiter Prof. Ludger Blum vom Jülicher Institut für Energie- und Klimaforschung, Bereich Elektrochemische Verfahrenstechnik. „Beim ersten Test hatten wir gleich einen elektrischen Nettowirkungsgrad von 43 Prozent, rund 10 Prozentpunkte besser als ein Gasmotor-Blockheizkraftwerk vergleichbarer Leistung. Und durch relativ einfache Maßnahmen lässt sich dieser Wert noch auf über 50 Prozent steigern.“

Langfristig ist ein Wirkungsgrad von rund 60 Prozent angepeilt. Die Anlage soll sich zunächst bei konstanter Leistung in mehreren Tausend Stunden Dauerbetrieb bewähren. Danach folgen dynamische Tests mit Lastwechseln, für die das System wiederholt abgekühlt und wieder aufgeheizt wird. Als weitere Schritte sind Verbesserungen der Robustheit und Langzeitstabilität geplant.

Die Brennstoffzellen-Module folgen dem in Jülich entwickelten, integrierten Konzept, alle Teile im Hochtemperaturbereich kompakt zu verbinden. Sie bestehen aus dem Hochleistungsstahl Crofer® 22 APU, der vom Forschungszentrum Jülich eigens für diesen Einsatzzweck entwickelt wurde und inzwischen von ThyssenKrupp VDM hergestellt wird. „Der Aufbau bietet mehrere Vorteile“, erläutert Ludger Blum. „Die Module haben eine minimierte Oberfläche und lassen sich gut isolieren. Sie besitzen eine gemeinsame Anschlusstechnik für alle Komponenten, lassen sich von der Größe her gut anpassen und bestehen aus relativ ähnlichen Teilen, was den Aufwand und damit auch die Kosten für die Herstellung verringert.“

Die hohe Betriebstemperatur von oxidkeramischen Brennstoffzellen ermöglicht es, vergleichsweise kostengünstige Elektrodenwerkstoffe einzusetzen und hohe Wirkungsgrade zu erzielen – erfordert aber relativ lange Aufheiz- und Abkühlungsphasen. „Durch den Einsatz neuartiger Hochleistungskathoden arbeitet das Jülicher Demonstrationssystem schon bei einer vergleichsweise niedrigen Betriebstemperatur von etwa 700 Grad Celsius, die es allein durch die Prozesswärme hält“, berichtet Dr. Norbert H. Menzler vom Institut für Energie- und Klimaforschung, Bereich Werkstoffsynthese und Herstellungsverfahren. Die Module sind mit einem Reformer ausgestattet und für die Verwertung von Erdgas ausgelegt, können aber auch direkt mit Wasserstoff betrieben werden.

Weitere Informationen:

Forschung am Institut für Energie- und Klimaforschung,
Bereich Elektrochemische Verfahrenstechnik
http://www.fz-juelich.de/iek/iek-3/DE/Forschung/forschung_node.html;
jsessionid=92FF3C06489B1075780F2798D4658990

Ansprechpartner:
Prof. Ludger Blum, Institut für Energie- und Klimaforschung, Bereich Elektrochemische Verfahrenstechnik (IEK-3)
Tel. 02461 61-6709
l.blum@fz-juelich.de
Dr. Norbert H. Menzler, Institut für Energie- und Klimaforschung, Bereich Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. 02461 61-3059
n.h.menzler@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Hochleitfähige Folien ermöglichen großflächige OLED-Beleuchtung
29.06.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Fraunhofer-Forscher entwickeln Hochdrucksensoren für Extremtemperaturen
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie