Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Katalysator für Brennstoffzelle

13.12.2013
Forscher entdecken möglichen Ersatz für Platin

Brennstoffzellen gelten als ein wichtiger Baustein der Energiewende, da sie elektrische Energie liefern, ohne zunächst aus fossilen Brennstoffen Hitze und Dampf erzeugen zu müssen.


Die Aufnahme des Raster-Tunnelmikroskops zeigt, wie sich Eisen-Atome und organische Moleküle regelmäßig auf einer Gold-Unterlage anordnen.

© Grumelli et al., Nat. Comm. 2013


Die Eisen-Atome (blau) und die organischen Moleküle (grün, schwarz) bilden ein Flechtmuster auf der Gold-Unterlage.

© Grumelli et al., Nat. Comm. 2013

Vielmehr erzeugen sie die Energie direkt aus einer Reaktion von Wasserstoff mit Sauerstoff zu Wasser. Deshalb können sie effizienter Energie erzeugen als Kohle- oder Gaskraftwerke. Heutige Brennstoffzellen brauchen allerdings für diese Reaktion teures Platin als Katalysator, was ihre breite Anwendung einschränkt.

Ein Team des Max-Planck-Instituts für Festkörperforschung in Stuttgart hat sich von der Natur inspirieren lassen und einen alternativen Katalysator entwickelt. Er besteht aus organischen Molekülen sowie Eisen bzw. Mangan auf einer Metallunterlage. Diese Materialien sind günstiger und leichter verfügbar als Platin.

Menschen und Tiere gewinnen Energie aus der gleichen Reaktion wie Brennstoffzellen: Sie atmen Sauerstoff ein und verbinden ihn in ihren Zellen mit Wasserstoff zu Wasser. Bei dieser chemischen Umwandlung wird Energie frei, die der Organismus zum Leben nutzt. Der Gedanke, in der Natur nach einem Weg für den Ersatz des teuren Katalysators Platin zu suchen, liegt also nahe. Das Edelmetall treibt eine bestimmte Teilreaktion bei der Energieumwandlung in einer Brennstoffzelle an: die so genannte Reduktion von Sauerstoff. Dabei nimmt der Sauerstoff zwei oder vier Elektronen auf, je nachdem, ob er mit dem Wasserstoff direkt oder über die Zwischenstufe Wasserstoffperoxid zu Wasser reagiert.

Natürliche Sauerstoff-reduzierende Enzyme enthalten Metalle wie Eisen und Mangan, die leicht über die Nahrung verfügbar sind. Mit dem Enzym verbundene organische Moleküle halten Atome dieser Metalle fest, sodass der Sauerstoff dort andocken und reduziert werden kann. Klaus Kern und seine Mitarbeiterin Doris Grumelli vom Max-Planck-Institut für Festkörperforschung haben nun Eisen- und Manganatome zusammen mit organischen Molekülen auf eine Goldunterlage aufgedampft. Dabei haben sie festgestellt, dass sich die organischen Moleküle und die Metallatome von selbst zu Mustern anordnen, die den funktionalen Zentren von Enzymen stark ähneln. Es bildeten sich Netzwerke, bei denen einzelne Eisen- oder Manganatome von mehreren organischen Molekülen umgeben sind wie die Kreuzungspunkte in einem Jägerzaun.

Damit die Forscher die katalytische Funktion der Netzwerke testen konnten, mussten sie ein Transportsystem entwickelten, mit dem sie Proben aus einem Vakuum in Flüssigkeiten überführen können. Denn die neuen Oberflächenstrukturen wurden in einem sehr reinen Vakuum erzeugt, die Tests fanden aber außerhalb der Vakuumkammer in einer elektrochemischen Zelle statt. Es zeigte sich, dass die katalytische Aktivität von der Art des Metallzentrums, die Stabilität der Struktur hingegen von der Art der organischen Moleküle, die das Netzwerk bilden, abhing. Eisenatome führten zu einer zweistufigen Reaktion über die Zwischenstufe Wasserstoffperoxid, während Manganatome eine direkte Umwandlung von Sauerstoff zu Wasser bewirkten.

Für Brennstoffzellen interessant dürfte die letztere Reaktion sein, da Experten durch die direkte Reaktion eine höhere Effizienz bei der Umwandlung der chemischen in elektrische Energie erwarten. „Doch auch die andere Variante könnte Anwendungen finden“, sagt Grumelli, „und zwar um die die Reaktion zu unterbrechen.“ Dies kann zum Beispiel bei Biosensoren eine Rolle spielen. Jedenfalls hat die Gruppe eine neue Art von Nanokatalysatoren geschaffen, die kostengünstig herzustellen sind und deren Ausgangsmaterialien reichlich vorhanden sind. Doris Grumelli arbeitet schon an einer neuen Variante solcher Strukturen: Mithilfe spezieller organischer Moleküle, die je ein Metallatom enthalten und zusätzlichen Metallatomen will sie eine Oberflächenstruktur schaffen, die gleichzeitig zwei Arten von Metallatomen enthalten. „Solche Strukturen könnten als Modellsystem für die biologische Forschung dienen“, sagt die Wissenschaftlerin.

Ansprechpartner
Dr. Doris Grumelli
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1432
E-Mail: d.grumelli@fkf.mpg.de
Originalpublikation
Doris Grumelli, Benjamin Wurster, Sebastian Stepanow and Klaus Kern
Bio-inspired nanocatalysts for the oxygen reduction reaction
Nature Communications, 5. Dezember 2013 (10.1038/ncomms3904)

Dr. Doris Grumelli | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7661546/katalysator_brennstoffzelle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Körperenergie als Stromquelle
22.08.2017 | Karlsruher Institut für Technologie

nachricht „Cool“ bleiben im Büro: Wasser als Kältemittel im Alltag bald vor Durchbruch?
22.08.2017 | Deutsche Bundesstiftung Umwelt (DBU)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie