Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Katalysatoren für die Erzeugung nachhaltiger Energieträger

22.05.2013
Eine europäische Forschungsgruppe unter Beteiligung von Prof. Dr.-Ing. Andreas Jess vom Zentrum für Energietechnik (ZET) der Universität Bayreuth hat neuartige Katalysatoren für die Fischer-Tropsch-Synthese entwickelt.

Die nur zu einem geringen Teil aus Kobalt bestehenden Partikel können die industrielle Produktion synthetischer Kraftstoffe verbilligen und erlauben eine bessere Steuerung der daran beteiligten chemischen Prozesse.

In der Fachzeitschrift "Angewandte Chemie International Edition" stellen die Forscher ihre Ergebnisse vor. Die neuen Katalysatoren können möglicherweise auch zur Lösung des Problems beitragen, wie sich große Mengen von Solar- und Windstrom speichern lassen.

Kobalt – ein vielgefragtes und teures Material für Katalysatoren

Weltweit kommt heute bei der Produktion synthetischer Kraftstoffe ein industrielles Verfahren zum Einsatz, das in den 1920er Jahren in Deutschland entwickelt wurde: die Fischer-Tropsch-Synthese. Dabei werden auf der Grundlage von Kohle oder Erdgas flüssige Kohlenwasserstoffe gewonnen, die anschließend zu hochreinen Kraftstoffen – insbesondere zu Dieselöl und Flugturbinenkraftstoff – weiterverarbeitet werden. Falls in den kommenden Jahrzehnten weniger preisgünstiges Erdöl auf den Weltmärkten zur Verfügung steht, sind synthetische Kraftstoffe, die aus Kohlenstoff und Wasserstoff hergestellt werden, eine zunehmend interessante Alternative.

Die an der Fischer-Tropsch-Synthese – kurz: FTS – beteiligten chemischen Prozesse können allerdings nur dann in der gewünschten Weise ablaufen, wenn Katalysatoren diese Prozesse in Gang setzen und steuern. Alle Industrieunternehmen, welche die FTS zur Gewinnung flüssiger Kohlenwasserstoffe einsetzen, bevorzugen hierfür zumeist Katalysatoren, die zu einem erheblichen Anteil aus Kobalt bestehen. Denn Kobalt gilt als dasjenige Metall, das für den industriellen Einsatz der FTS optimal geeignet ist. Doch es ist ein vergleichsweise teures Metall, das in unterschiedlichen Wirtschaftszweigen benötigt wird. Die Europäische Kommission zählt Kobalt in einem 2010 veröffentlichten Bericht zu denjenigen Metallen, die für den Industrie- und Technologiestandort Europa von zentraler Bedeutung sind.
Neue maßgeschneiderte FTS-Katalysatoren: kostengünstig und zielgenau

Lässt sich also der teure Kobalt-Anteil der FTS-Katalysatoren verringern, ohne die von der Industrie geforderte Effizienz dieser Katalysatoren zu schwächen? Diese Frage stand am Anfang eines internationalen Projekts, in dem der Lehrstuhl für chemische Verfahrenstechnik und das Zentrum für Energietechnik (ZET) der Universität Bayreuth mit der Universität Amsterdam, der Universität Lille und einem Forschungszentrum der Total S.A. in Paris zusammengearbeitet haben. Der Forschungsgruppe ist es gelungen, neuartige FTS-Katalysatoren zu entwickeln und zu testen, die alle die gleiche Grundstruktur aufweisen: Sie bestehen aus einem magnetischen Kern und einer Schale aus Kobalt. Diese Schale muss höchstens 1 Nanometer – also ein Millionstel Millimeter – dick sein, damit die Partikel in der gewünschten Weise als FTS-Katalysator fungieren. Folglich enthalten die Partikel erheblich weniger Kobalt als die in der Industrie bisher üblichen Katalysatoren. Für den metallischen Kern kommen unterschiedliche Metalle infrage, beispielsweise Eisen, Kupfer oder Magnesium – wobei sich bei der Verwendung von Eisen die geringsten Kosten ergeben.

Das von den europäischen Partnern entwickelte Verfahren zur Herstellung dieser FTS-Katalysatoren gewährleistet, dass der zweistufige Aufbau aus magnetischem Kern und kobalthaltiger Schale während der Katalyse erhalten bleibt, so dass die Partikel mehrfach verwendet werden können. Hinzu kommt, dass sich die Größe der Partikel nanometergenau festlegen lässt. Auch dies ist ein wesentlicher Vorteil: Denn die Partikelgröße beeinflusst nicht nur die Geschwindigkeit, sondern auch das Ergebnis der Katalyse. Genauer gesagt: Von der Größe der Partikel hängt es ab, wie sich das Gemisch unterschiedlicher Substanzen, das bei der FTS herauskommt, zusammensetzt. So wurde in den Bayreuther Laboratorien beispielsweise mit hoher Präzision ermittelt, wie dick Schale und Kern sein müssen, damit in diesem Gemisch ein 20prozentiger Anteil von Alkenen enthalten ist.

"Unser neues Verfahren macht es möglich, in Bezug auf die jeweils angestrebten Katalyse-Ergebnisse maßgeschneiderte FTS-Katalysatoren herzustellen", erklärt Prof. Jess. "Gerade deshalb ist es eine durchaus vielversprechende Innovation für Industrieunternehmen, die sich auf die Produktion synthetischer Kraftstoffe spezialisiert haben."

Flüssige Kohlenwasserstoffe – ein Speichermedium für Solar- und Windstrom?

Die Bayreuther Ingenieurwissenschaftler haben aber noch einen weiterreichenden Nutzen der neuen Katalysatoren im Blick. Bei der Gewinnung von Strom aus Sonnen- und Windenergie stellt sich das Problem, dass die erzeugten Strommengen den jeweiligen Bedarf bisweilen weit übertreffen; eine weitere Herausforderung ist es, den beispielsweise an der Meeresküste erzeugten Strom über Hunderte oder sogar Tausende von Kilometern zu den Verbrauchern zu transportieren. Eine 2012 gegründete Helmholtz-Energie-Allianz, an der auch Prof. Jess mit dem Bayreuther Lehrstuhl für Chemische Verfahrenstechnik und dem ZET teilnimmt, widmet sich dieser doppelten Problematik. Die Forschungspartner untersuchen, ob es einen kostengünstigen Weg gibt, synthetisch hergestellte flüssige Kohlenwasserstoffe als Speicher für überschüssigen Solar- und Windstrom zu nutzen.

Ausgangspunkt des Projekts ist die Idee, diesen Strom zu verwenden, um durch Elektrolyse aus Wasser Sauerstoff und Wasserstoff zu erzeugen. Der Wasserstoff soll dann mit dem Treibhausgas Kohlendioxid, das beispielsweise bei Kohlekraftwerken anfällt und aus dem Rauchgas abgetrennt werden kann, so zusammengeführt werden, dass ein hochreines Synthesegas entsteht. Dieses Synthesegas bildet wiederum die Grundlage für die Herstellung flüssiger Kohlenwasserstoffe. Genau diesen Prozess können die neuen FTS-Katalysatoren unterstützen.

Veröffentlichung:

Calderone, V. R., Shiju, N. R., Curulla-Ferré, D., Chambrey, S., Khodakov, A., Rose, A., Thiessen, J., Jess, A. and Rothenberg, G.,
De Novo Design of Nanostructured Iron–Cobalt Fischer–Tropsch Catalysts,
in: Angewandte Chemie International Edition (2013), 125: 4493 - 4497.
DOI: 10.1002/ange.201209799

Der Artikel bildete die Grundlage für das Titelbild dieser Ausgabe der "Angewandten Chemie".

Ansprechpartner:

Prof. Dr.-Ing. Andreas Jess
Lehrstuhl für Chemische Verfahrenstechnik
Zentrum für Energietechnik (ZET)
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55-7430 und -7431
E-Mail: andreas.jess@uni-bayreuth.de

Hintergrund:

Das Zentrum für Energietechnik (ZET) bündelt Expertise und Aktivitäten der Fakultät für Ingenieurwissenschaften der Universität Bayreuth. Die derzeit acht Lehrstühle, die zum Zentrum beitragen, decken mit ihrer Kompetenz thermische, chemische, biologische und elektrische Aspekte der Erzeugung, Übertragung, Speicherung und Nutzung von Energie ab. Unternehmen, Kommunen und andere Interessenten finden im ZET eine zentrale Anlaufstelle für alle Energiefragen.

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Digitale Messtaster von WayCon – höchst präzise und vielseitig einsetzbar
14.11.2017 | WayCon Positionsmesstechnik GmbH

nachricht FAU-Forscher entwickeln neues Materialsystem für effiziente und langlebige Solarzellen
10.11.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte