Neue Investitionen in die Halbleiterforschung

Anlieferung der Implantationsanlage an der großen Reinraumhalle der Universität Erlangen-Nürnberg am 21. Mai 2012. Fraunhofer IISB<br>

Am Fraunhofer IISB in Erlangen wird gerade eine neue Anlage zur Ionenimplan-tation in Betrieb genommen. Das knapp 15 Tonnen schwere und rund 3 Mio. Euro teure Großgerät wird im gemeinsam mit dem IISB betriebenen Reinraum der Universität Erlangen-Nürnberg aufgestellt. Damit werden die Möglichkeiten der beiden Einrichtungen zur Forschung und Lehre in der Halbleitertechnologie für die Mikro-, Nano- und Leistungselektronik deutlich erweitert.

Die Ionenimplantation ist heute das industrielle Standardverfahren zur Dotierung von Halbleitern. Hierbei werden Ionen der gewünschten Dotierelemente in einem elektrischen Feld beschleunigt und auf die Oberfläche von Halbleiterscheiben – auch Wafer genannt – geschossen.

Je nach Geschwindigkeit bzw. Energie und Dosis, mit der die Fremdelemente in den Halbleiter eingebracht werden, ergeben sich unterschiedliche Eindringprofile und -tiefen im Festkörper z.B. eines Silizium-Wafers. Damit und durch die Wahl des Dotierstoffs selbst lassen sich gezielt die elektrischen Eigenschaften von Halbleitern einstellen. Dies ist eine wichtige Voraussetzung zur Realisierung moderner Halbleiterbauelemente.

Das Fraunhofer IISB ist eine der führenden Forschungseinrichtungen zur Ionenimplantation in Europa und verfügt über jahrzehntelange Erfahrung auf diesem Gebiet. Der neue Ionenimplanter des IISB ersetzt eine ältere Anlage und ist einer der größeren Posten bei der gerade laufenden Modernisierung der Reinraumausstattung in Erlangen, die mit Mitteln des Bayerischen Wirtschaftsministeriums, des Bundes und der EU gefördert wird. Mit der neuen Anlage werden Forschungsarbeiten auf Halbleiterscheiben mit bis zu 200 mm Durchmesser möglich sein, statt bisher nur 150 mm. Zudem wird der Energiebereich für die Beschleunigung der Ionen deutlich erweitert.

Künftig können einfach geladene Ionen in einer Energiebandbreite von 2 bis 270 Kiloelektronenvolt (keV) erzeugt werden. Gerade im niedrigen Energiebereich lassen sich so sehr dünne Implantationsschichten im Halbleiter erzeugen – wichtig für die stetige Miniaturisierung in der Bauelementetechnologie. Neu ist auch der Einsatz von bis zu dreifach geladenen Ionen, was Implantationen mit Energien von maximal 810 keV erlaubt.

„Das Materialspektrum für die implantierten Elemente umfasst dabei die Standarddotierstoffe für Silizium-Wafer, also Bor, Phosphor und Arsen, aber auch Elemente wie Aluminium und Stickstoff zur Dotierung von Siliziumkarbid, ein Halbleiter, der speziell für die Hochtemperatur- und Leistungselektronik sehr viele Möglichkeiten bietet“, erläutert Dr. Volker Häublein, der als Gruppenleiter am IISB für die Ionenimplantation verantwortlich ist. Zudem können auch so genannte „Exoten“ für Spezialanwendungen außerhalb der klassischen Halbleitertechnologie, etwa Caesium, Rubidium oder Lanthan, implantiert werden.

Die Anlieferung der Anlage sowie das Einbringen in den Reinraum bedeuten einen großen logistischen Aufwand. Mehr als 24 Tonnen Transportgewicht erforderten den Einsatz von drei Lkws und eines Schwerlaststaplers. Eine spezielle Konstruktion aus Stahlträgern und dicken Aluminiumplatten stabilisiert den Boden des Reinraumlabors unter der schweren Anlage. Die Universität als Hausherrin des Reinraums, der einer der größten seiner Art für Forschung und Lehre in Deutschland und Europa ist, beteiligt sich mit dem nötigen Umbau der Laborebene im Reinraumgebäude.

„Die modernisierte Ausstattung im Reinraum wird die enge, synergetische Kooperation zwischen dem Fraunhofer IISB und der Universität in Erlangen weiter intensivieren. Neben den erweiterten Forschungsmöglichkeiten stellt der Reinraum damit eine höchst attraktive Umgebung für Studenten technischer Disziplinen, etwa der Elektrotechnik oder der Nanotechnologie, dar“, so Prof. Dr. Lothar Frey, Leiter des IISB und Inhaber des Lehrstuhls für Elektronische Bauelemente an der Universität.

Die Modernisierung der Reinraumausstattung des Fraunhofer IISB wird gefördert durch Mittel des Bayerischen Staatsministeriums für Wirtschaft, Infrastruktur, Verkehr und Technologie, des Bundesministeriums für Bildung und Forschung und der EU.

Ansprechpartner:
Volker Häublein
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-220
Fax +49-9131-761-360
volker.haeublein@iisb.fraunhofer.de
Fraunhofer IISB:
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 170 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Media Contact

Volker Häublein Fraunhofer-Gesellschaft

Weitere Informationen:

http://www.iisb.fraunhofer.de/

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer