Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Beleuchtungsmethode verbessert Qualität von Visualisierungen

03.04.2012
Von Computerspielen in die Wissenschaft

Simulationen sind aus vielen Bereichen in Forschung, Industrie oder der Medizin nicht mehr wegzudenken. Die Menge der Daten und ihre Komplexität steigt, und die Betrachtungszeiträume werden länger. Daher ist es ist eine große Herausforderung, Prozesse möglichst realistisch zu untersuchen, ohne die verfügbaren Rechenleistungen zu sprengen.


Visualisierung eines Virus mit 220.000 Atomen. Links: klassische Beleuchtung in Echtzeitcomputergrafik. Rechts: die Beleuchtung mit Ambient Occlusion macht die Oberflächenstruktur erheblich besser sichtbar. Universität Stuttgart/SFB 716


Ein Laser sprengt Atome aus einem Aluminium-Block. Links: klassische Beleuchtung. Rechts: die Beleuchtung mit Ambient Occlusion stellt den Krater entsprechend seiner Form und Tiefe dar und ermöglicht es, die Struktur besser zu erkennen. Universität Stuttgart/SFB 716

Wissenschaftler des Visualisierungsinstitutes der Universität Stuttgart haben nun im Rahmen des Sonderforschungsbereiches (SFB) 716 ein Verfahren entwickelt, das die Qualität virtueller Bilder erheblich verbessert und gleichzeitig schnell genug ist, um komplexe, dynamische Simulationen effizient auf handelsüblichen Computern zu analysieren. Hierzu machen sie sich eine Beleuchtungs-Methodik zu Nutze, die von Computerspielen bekannt ist.

Wann bricht Metall unter mechanischen oder thermischen Belastungen? Unter welchen Bedingungen binden sich Fette an Waschmittel? Wann nutzen sich Verschleißteile einer hydraulischen Maschine ab? Simulationen ermöglichen es, diese Fragen zu beantworten und Prozesse zu optimieren, bei denen Experimente nicht oder nur mit unverhältnismäßigem Aufwand durchführbar sind. Voraussetzung für eine effektive Analyse ist jedoch eine hohe Bildqualität. Dazu gehört eine optimale Beleuchtung. Doch das ist einfacher gesagt als getan: Die auszuwertenden Datensätze erreichen viele Gigabyte und enthalten oft mehrere Millionen Partikel pro Zeitschritt. Eine lange Beobachtungsdauer potenziert die zu verarbeitende Informationsflut zusätzlich.

Realistische Bilder auf handelsüblichen Rechnern

Beleuchtungs-Modelle der klassischen Echtzeitcomputergrafik sind für solche umfangreichen Simulationen nicht geeignet. Die Beleuchtung photometrisch exakt zu berechnen, sprengt dagegen schnell die verfügbare Rechenkapazität und verlängert den Analyseprozess unnötig. Auf der Suche nach Alternativen haben Forscher des SFB 716 nun eine aus der Computergrafik bekannte Methodik auf wissenschaftliche Darstellungen übertragen. Mit dem sogenannten „Ambient Occlusion Verfahren“ werden üblicherweise Szenen für Computerspiele berechnet. Die Darstellungsqualität von Daten aus Partikelsimulationen hat sich dadurch enorm verbessert. „Was man sieht, ist zwar physikalisch nicht ganz korrekt, aber der Eindruck ist mit einer realen Beleuchtungssituation vergleichbar. Zudem ist das Verfahren schnell genug, um die Visualisierungen auf handelsüblichen Rechnern zu berechnen“, beschreibt Sebastian Grottel seine gemeinsam mit Kollegen entwickelte Arbeit.

Von Medizin bis Materialbearbeitung

Erste Anwendung fand die Methode bei der Untersuchung von sogenannten Laserablationen, dem Abtragen von Material mit Laserstrahlen. Dieses Verfahren wird unter anderem in der minimalinvasiven Chirurgie oder bei der Behandlung von Hauterkrankungen eingesetzt, aber auch in verschiedenen Sparten der Materialbearbeitung, so bei Gravierungen auf mikroskopischer Skala, Reinigungs- oder Beschichtungsprozessen. Dabei kommt es zu Wechselwirkungen zwischen verdampftem Material und dem Laserstrahl, was dazu führt, dass ein Teil der winzig kleinen abgetragenen Teilchen die Materialoberfläche beeinträchtigt. Mit dem neuen Beleuchtungsverfahren können die Wissenschaftler diese Prozesse leichter analysieren, da sich die Tiefe der entstandenen Krater sowie die Menge und Größe des ausgeschleuderten Materials wesentlich besser einschätzen lassen.

Ebenso profitieren Biochemiker und Pharmazeuten von dieser Methodik: Denn um Medikamente zu entwickeln und verbessern, sind konkrete Informationen zu Oberfläche und Form von Makromolekülen wie Proteine, Viren und Bakterien erforderlich. Beispielsweise müssen reagierende Antikörper nicht nur in ihrer chemischen Zusammensetzung, sondern auch durch ihre Form wie ein Puzzleteil exakt an die Oberfläche eines Virus passen. Solche Informationen sind nun wesentlich detaillierter und präziser zu erkennen. Das Verfahren wurde im März auf der internationalen Visualisierungskonferenz Pacific VIS 2012 in Songdo in Korea vorgestellt. Langfristig wird es in umfangreiche Visualisierungssoftware-pakete integriert, so dass Wissenschaftler und Ingenieure an Universitäten und in der Industrie zur Auswertung von Simulationsdaten darauf zugreifen können.

Weitere Informationen bei Tina Barthelmes, Universität Stuttgart, Sonderforschungsbereich 716 (Dynamische Simulation von Systemen mit großen Teilchenzahlen), Tel. 0711/685-88604, e-mail: tina.barthelmes@sfb716.uni-stuttgart.de, http://www.sfb716.uni-stuttgart.de

Originalveröffentlichung:
Grottel, Sebastian; Krone, Michael; Scharnowski, Katrin; Ertl, Thomas: Object-Space Ambient Occlusion for Molecular Dynamics.

In: Proceedings of IEEE Pacific Visualization Symposium 2012 (2012)

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.sfb716.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht DFKI-Roboter erkunden autonom Lavahöhlen auf Teneriffa
21.11.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Digitale Messtaster von WayCon – höchst präzise und vielseitig einsetzbar
14.11.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Gene für das Risiko von allergischen Erkrankungen entdeckt

21.11.2017 | Studien Analysen

Wafer zu Chip: Röntgenblick für weniger Ausschuss

21.11.2017 | Informationstechnologie

Nanopartikel helfen bei Malariadiagnose – neuer Schnelltest in der Entwicklung

21.11.2017 | Biowissenschaften Chemie