Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Beleuchtungsmethode verbessert Qualität von Visualisierungen

03.04.2012
Von Computerspielen in die Wissenschaft

Simulationen sind aus vielen Bereichen in Forschung, Industrie oder der Medizin nicht mehr wegzudenken. Die Menge der Daten und ihre Komplexität steigt, und die Betrachtungszeiträume werden länger. Daher ist es ist eine große Herausforderung, Prozesse möglichst realistisch zu untersuchen, ohne die verfügbaren Rechenleistungen zu sprengen.


Visualisierung eines Virus mit 220.000 Atomen. Links: klassische Beleuchtung in Echtzeitcomputergrafik. Rechts: die Beleuchtung mit Ambient Occlusion macht die Oberflächenstruktur erheblich besser sichtbar. Universität Stuttgart/SFB 716


Ein Laser sprengt Atome aus einem Aluminium-Block. Links: klassische Beleuchtung. Rechts: die Beleuchtung mit Ambient Occlusion stellt den Krater entsprechend seiner Form und Tiefe dar und ermöglicht es, die Struktur besser zu erkennen. Universität Stuttgart/SFB 716

Wissenschaftler des Visualisierungsinstitutes der Universität Stuttgart haben nun im Rahmen des Sonderforschungsbereiches (SFB) 716 ein Verfahren entwickelt, das die Qualität virtueller Bilder erheblich verbessert und gleichzeitig schnell genug ist, um komplexe, dynamische Simulationen effizient auf handelsüblichen Computern zu analysieren. Hierzu machen sie sich eine Beleuchtungs-Methodik zu Nutze, die von Computerspielen bekannt ist.

Wann bricht Metall unter mechanischen oder thermischen Belastungen? Unter welchen Bedingungen binden sich Fette an Waschmittel? Wann nutzen sich Verschleißteile einer hydraulischen Maschine ab? Simulationen ermöglichen es, diese Fragen zu beantworten und Prozesse zu optimieren, bei denen Experimente nicht oder nur mit unverhältnismäßigem Aufwand durchführbar sind. Voraussetzung für eine effektive Analyse ist jedoch eine hohe Bildqualität. Dazu gehört eine optimale Beleuchtung. Doch das ist einfacher gesagt als getan: Die auszuwertenden Datensätze erreichen viele Gigabyte und enthalten oft mehrere Millionen Partikel pro Zeitschritt. Eine lange Beobachtungsdauer potenziert die zu verarbeitende Informationsflut zusätzlich.

Realistische Bilder auf handelsüblichen Rechnern

Beleuchtungs-Modelle der klassischen Echtzeitcomputergrafik sind für solche umfangreichen Simulationen nicht geeignet. Die Beleuchtung photometrisch exakt zu berechnen, sprengt dagegen schnell die verfügbare Rechenkapazität und verlängert den Analyseprozess unnötig. Auf der Suche nach Alternativen haben Forscher des SFB 716 nun eine aus der Computergrafik bekannte Methodik auf wissenschaftliche Darstellungen übertragen. Mit dem sogenannten „Ambient Occlusion Verfahren“ werden üblicherweise Szenen für Computerspiele berechnet. Die Darstellungsqualität von Daten aus Partikelsimulationen hat sich dadurch enorm verbessert. „Was man sieht, ist zwar physikalisch nicht ganz korrekt, aber der Eindruck ist mit einer realen Beleuchtungssituation vergleichbar. Zudem ist das Verfahren schnell genug, um die Visualisierungen auf handelsüblichen Rechnern zu berechnen“, beschreibt Sebastian Grottel seine gemeinsam mit Kollegen entwickelte Arbeit.

Von Medizin bis Materialbearbeitung

Erste Anwendung fand die Methode bei der Untersuchung von sogenannten Laserablationen, dem Abtragen von Material mit Laserstrahlen. Dieses Verfahren wird unter anderem in der minimalinvasiven Chirurgie oder bei der Behandlung von Hauterkrankungen eingesetzt, aber auch in verschiedenen Sparten der Materialbearbeitung, so bei Gravierungen auf mikroskopischer Skala, Reinigungs- oder Beschichtungsprozessen. Dabei kommt es zu Wechselwirkungen zwischen verdampftem Material und dem Laserstrahl, was dazu führt, dass ein Teil der winzig kleinen abgetragenen Teilchen die Materialoberfläche beeinträchtigt. Mit dem neuen Beleuchtungsverfahren können die Wissenschaftler diese Prozesse leichter analysieren, da sich die Tiefe der entstandenen Krater sowie die Menge und Größe des ausgeschleuderten Materials wesentlich besser einschätzen lassen.

Ebenso profitieren Biochemiker und Pharmazeuten von dieser Methodik: Denn um Medikamente zu entwickeln und verbessern, sind konkrete Informationen zu Oberfläche und Form von Makromolekülen wie Proteine, Viren und Bakterien erforderlich. Beispielsweise müssen reagierende Antikörper nicht nur in ihrer chemischen Zusammensetzung, sondern auch durch ihre Form wie ein Puzzleteil exakt an die Oberfläche eines Virus passen. Solche Informationen sind nun wesentlich detaillierter und präziser zu erkennen. Das Verfahren wurde im März auf der internationalen Visualisierungskonferenz Pacific VIS 2012 in Songdo in Korea vorgestellt. Langfristig wird es in umfangreiche Visualisierungssoftware-pakete integriert, so dass Wissenschaftler und Ingenieure an Universitäten und in der Industrie zur Auswertung von Simulationsdaten darauf zugreifen können.

Weitere Informationen bei Tina Barthelmes, Universität Stuttgart, Sonderforschungsbereich 716 (Dynamische Simulation von Systemen mit großen Teilchenzahlen), Tel. 0711/685-88604, e-mail: tina.barthelmes@sfb716.uni-stuttgart.de, http://www.sfb716.uni-stuttgart.de

Originalveröffentlichung:
Grottel, Sebastian; Krone, Michael; Scharnowski, Katrin; Ertl, Thomas: Object-Space Ambient Occlusion for Molecular Dynamics.

In: Proceedings of IEEE Pacific Visualization Symposium 2012 (2012)

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.sfb716.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics