Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Beleuchtungsmethode verbessert Qualität von Visualisierungen

03.04.2012
Von Computerspielen in die Wissenschaft

Simulationen sind aus vielen Bereichen in Forschung, Industrie oder der Medizin nicht mehr wegzudenken. Die Menge der Daten und ihre Komplexität steigt, und die Betrachtungszeiträume werden länger. Daher ist es ist eine große Herausforderung, Prozesse möglichst realistisch zu untersuchen, ohne die verfügbaren Rechenleistungen zu sprengen.


Visualisierung eines Virus mit 220.000 Atomen. Links: klassische Beleuchtung in Echtzeitcomputergrafik. Rechts: die Beleuchtung mit Ambient Occlusion macht die Oberflächenstruktur erheblich besser sichtbar. Universität Stuttgart/SFB 716


Ein Laser sprengt Atome aus einem Aluminium-Block. Links: klassische Beleuchtung. Rechts: die Beleuchtung mit Ambient Occlusion stellt den Krater entsprechend seiner Form und Tiefe dar und ermöglicht es, die Struktur besser zu erkennen. Universität Stuttgart/SFB 716

Wissenschaftler des Visualisierungsinstitutes der Universität Stuttgart haben nun im Rahmen des Sonderforschungsbereiches (SFB) 716 ein Verfahren entwickelt, das die Qualität virtueller Bilder erheblich verbessert und gleichzeitig schnell genug ist, um komplexe, dynamische Simulationen effizient auf handelsüblichen Computern zu analysieren. Hierzu machen sie sich eine Beleuchtungs-Methodik zu Nutze, die von Computerspielen bekannt ist.

Wann bricht Metall unter mechanischen oder thermischen Belastungen? Unter welchen Bedingungen binden sich Fette an Waschmittel? Wann nutzen sich Verschleißteile einer hydraulischen Maschine ab? Simulationen ermöglichen es, diese Fragen zu beantworten und Prozesse zu optimieren, bei denen Experimente nicht oder nur mit unverhältnismäßigem Aufwand durchführbar sind. Voraussetzung für eine effektive Analyse ist jedoch eine hohe Bildqualität. Dazu gehört eine optimale Beleuchtung. Doch das ist einfacher gesagt als getan: Die auszuwertenden Datensätze erreichen viele Gigabyte und enthalten oft mehrere Millionen Partikel pro Zeitschritt. Eine lange Beobachtungsdauer potenziert die zu verarbeitende Informationsflut zusätzlich.

Realistische Bilder auf handelsüblichen Rechnern

Beleuchtungs-Modelle der klassischen Echtzeitcomputergrafik sind für solche umfangreichen Simulationen nicht geeignet. Die Beleuchtung photometrisch exakt zu berechnen, sprengt dagegen schnell die verfügbare Rechenkapazität und verlängert den Analyseprozess unnötig. Auf der Suche nach Alternativen haben Forscher des SFB 716 nun eine aus der Computergrafik bekannte Methodik auf wissenschaftliche Darstellungen übertragen. Mit dem sogenannten „Ambient Occlusion Verfahren“ werden üblicherweise Szenen für Computerspiele berechnet. Die Darstellungsqualität von Daten aus Partikelsimulationen hat sich dadurch enorm verbessert. „Was man sieht, ist zwar physikalisch nicht ganz korrekt, aber der Eindruck ist mit einer realen Beleuchtungssituation vergleichbar. Zudem ist das Verfahren schnell genug, um die Visualisierungen auf handelsüblichen Rechnern zu berechnen“, beschreibt Sebastian Grottel seine gemeinsam mit Kollegen entwickelte Arbeit.

Von Medizin bis Materialbearbeitung

Erste Anwendung fand die Methode bei der Untersuchung von sogenannten Laserablationen, dem Abtragen von Material mit Laserstrahlen. Dieses Verfahren wird unter anderem in der minimalinvasiven Chirurgie oder bei der Behandlung von Hauterkrankungen eingesetzt, aber auch in verschiedenen Sparten der Materialbearbeitung, so bei Gravierungen auf mikroskopischer Skala, Reinigungs- oder Beschichtungsprozessen. Dabei kommt es zu Wechselwirkungen zwischen verdampftem Material und dem Laserstrahl, was dazu führt, dass ein Teil der winzig kleinen abgetragenen Teilchen die Materialoberfläche beeinträchtigt. Mit dem neuen Beleuchtungsverfahren können die Wissenschaftler diese Prozesse leichter analysieren, da sich die Tiefe der entstandenen Krater sowie die Menge und Größe des ausgeschleuderten Materials wesentlich besser einschätzen lassen.

Ebenso profitieren Biochemiker und Pharmazeuten von dieser Methodik: Denn um Medikamente zu entwickeln und verbessern, sind konkrete Informationen zu Oberfläche und Form von Makromolekülen wie Proteine, Viren und Bakterien erforderlich. Beispielsweise müssen reagierende Antikörper nicht nur in ihrer chemischen Zusammensetzung, sondern auch durch ihre Form wie ein Puzzleteil exakt an die Oberfläche eines Virus passen. Solche Informationen sind nun wesentlich detaillierter und präziser zu erkennen. Das Verfahren wurde im März auf der internationalen Visualisierungskonferenz Pacific VIS 2012 in Songdo in Korea vorgestellt. Langfristig wird es in umfangreiche Visualisierungssoftware-pakete integriert, so dass Wissenschaftler und Ingenieure an Universitäten und in der Industrie zur Auswertung von Simulationsdaten darauf zugreifen können.

Weitere Informationen bei Tina Barthelmes, Universität Stuttgart, Sonderforschungsbereich 716 (Dynamische Simulation von Systemen mit großen Teilchenzahlen), Tel. 0711/685-88604, e-mail: tina.barthelmes@sfb716.uni-stuttgart.de, http://www.sfb716.uni-stuttgart.de

Originalveröffentlichung:
Grottel, Sebastian; Krone, Michael; Scharnowski, Katrin; Ertl, Thomas: Object-Space Ambient Occlusion for Molecular Dynamics.

In: Proceedings of IEEE Pacific Visualization Symposium 2012 (2012)

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.sfb716.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten