Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige LEDs weisen den Weg zu günstigeren Bildschirmen

08.11.2013
Einsatz z. B. in Smartphones oder auch als Leuchtfliesen fürs Bad denkbar / Kooperation der Universitäten Bonn und Regensburg

Forscher der Universitäten Bonn und Regensburg haben einen neuartigen Typus organischer Leuchtdioden (OLEDs) entwickelt. Die Mini-Lämpchen eignen sich für den Bau besonders energiesparender und kostengünstiger Bildschirme. Diese könnten etwa in Smartphones, Tablet-PCs oder TV-Geräten zum Einsatz kommen.


Neuartige Moleküle für OLEDs. Durch einen Trick wird die Orientierung der "Kompass-Nadel" des Moleküls durcheinander gewirbelt, so dass effizientere Lichtemission erfolgen kann.

John Lupton

Auch Anwendungen wie leuchtende Fliesen für Küche oder Bad sind denkbar. Die Wissenschaftler haben ihre Ergebnisse nun in der Zeitschrift „Angewandte Chemie“ vorgestellt (DOI: 10.1002/anie.201307601).

OLEDs kommen schon heute in den Displays von Smartphones oder Digitalkameras zum Einsatz. Sie ermöglichen ein besonders brillantes, kontrastreiches Bild, haben aber einen entscheidenden Nachteil: Sie können normalerweise nur ein Viertel der eingesetzten elektrischen Energie in Licht umwandeln. Diese Ausbeute lässt sich zwar erhöhen, indem man das Display mit kleinen Mengen Platin oder Iridium „verunreinigt“. Diese Elemente sind aber selten und teuer. Die Herstellung hochwertiger OLED-Displays war daher bislang eine relativ kostspielige Angelegenheit.

Das könnte sich in Zukunft ändern. Die Wissenschaftler aus Bonn, Regensburg und den USA haben nämlich einen neuen Typus von OLEDs hergestellt, der auch ohne Edelmetalle das Potenzial für hohe Lichtausbeuten aufweist. Damit könnten OLED-Bildschirme bald deutlich kostengünstiger werden.

OLEDs sind gar nicht organisch
OLEDs heißen so, weil sie in ihrer Reinform aus organischen Molekülen bestehen – das bedeutet, sie sind nur aus Kohlenstoff und Wasserstoff aufgebaut. Das Funktionsprinzip einer organischen Leuchtdiode ist einfach: Ein dünner Film der Moleküle wird mit zwei Elektroden verbunden. Diese werden an eine Batterie angeschlossen, so dass ein elektrischer Strom aus positiven und negativen Ladungen fließt. Treffen diese Ladungen aufeinander, so vernichten sie sich in einem Lichtblitz.

Da sich positive und negative Ladungen anziehen, sollte die Lichterzeugung im Prinzip auch sehr effizient klappen. Doch besitzen elektrische Ladungen zusätzlich ein magnetisches Moment – Wissenschaftler sprechen vom „Spin“. Ladungen mit gleichem Spin stoßen sich ab, ähnlich wie die Nordpole zweier Magneten. Diese Abstoßung überwiegt sogar die Anziehung zwischen positiven und negativen Ladungen. Haben unterschiedliche Ladungen denselben Spin, gibt es also keinen Lichtblitz. Stattdessen wird die elektrische Energie in Wärme umgewandelt.

In normalen OLEDs ist das leider sehr häufig der Fall: Drei Viertel aller Ladungen tragen denselben Spin. Sie zeigen quasi wie Kompassnadeln in dieselbe Richtung und können sich nicht berühren. Entsprechend gering ist die Lichtausbeute. Die OLED-Hersteller haben aber einen Trick ersonnen, um diese Ausbeute zu erhöhen: Sie wirbeln die Kompassnadeln mit einem noch stärkeren Magneten durcheinander. Dazu nutzen sie schwere Metalle wie Platin oder Iridium. Auf diese Weise ist es möglich, nahezu die gesamte elektrische Energie zur Erzeugung von Licht zu verwenden. Allerdings heißt das auch: Streng genommen sind die Materialien in OLEDs gar keine organischen Verbindungen, sondern metallorganische.

Spontaner Richtungswechsel
„Wir erhöhen die Ausbeute dagegen mit einem ganz anderen Mechanismus“, erklärt Dr. John Lupton, Physik-Professor an der Universität Regensburg. „Ladungen können die Richtung ihres Spins nämlich spontan ändern. Dazu muss man nur lange genug warten.“ Das Problem dabei: Herkömmliche OLEDs können die elektrische Energie nicht lange genug speichern, um diese Wartezeit zu überbrücken. Stattdessen wandeln sie die Energie einfach in Wärme um.

„Die von uns konstruierten OLEDs können elektrische Energie augenscheinlich deutlich länger speichern“, sagt der Chemiker Professor Dr. Sigurd Höger von der Universität Bonn. „Sie können daher die spontanen Sprünge der Spins nutzen, um Licht zu erzeugen – zumindest vermuten wir das.“ Die neuartigen Stoffe bergen daher das Potenzial, in OLEDs auch ohne „metallorganische Tricks“ kaum Abwärme zu erzeugen und somit die eingesetzte elektrische Energie sehr effizient in Licht umzuwandeln.

Die Arbeit wurde von der Volkswagen-Stiftung und der Deutschen Forschungsgemeinschaft (DFG) gefördert. Kooperationspartner waren die University of Utah und das renommierte Massachusetts Institute of Technology (M.I.T.).

Die Pressemitteilung wurde gemeinsam mit der Universität Bonn herausgegeben.

Publikation: Metal-free OLED triplet emitters by side-stepping Kasha’s rule; D. Chaudhuri, E. Sigmund, A. Meyer, L. Röck, P. Klemm, S. Lautenschlager, A. Schmid, S. R. Yost, T. Van Voorhis, S. Bange, S. Höger und J. M. Lupton; Angewandte Chemie (DOI: 10.1002/anie.201307601)

Ansprechpartner für Medienvertreter:
Prof. Dr. Sigurd Höger
Universität Bonn
Kekulé-Institut für Organische Chemie und Biochemie
Tel.: 0228 73-6127
E-Mail: hoeger@uni-bonn.de
Prof. Dr. John Lupton
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2081
E-Mail: John.Lupton@ur.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.ur.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen
12.12.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

nachricht Meilenstein in der Kreissägetechnologie
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten