Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige kompakte Mikrosystemlichtquelle für mobile Analytik-Systeme

17.03.2009
Überschreitet die vorliegende Substanz den Grenzwort oder ist sie unbedenklich? Ist das Lebensmittel verdorben oder genießbar? Solche grundlegenden Entscheidungen sollen künftig schnell und ohne aufwändige, teure Laboranalysen vor Ort gefällt werden.

Am Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) wurde eine äußerst kompakte und effiziente Mikrosystemlichtquelle entwickelt. Aufgrund ihres geringen Energieverbrauches kann sie in tragbare Messsysteme eingebaut werden und ist ideal für Vor-Ort-Untersuchungen im Bereich der Bioanalytik, der Lebensmittelüberwachung und der Medizintechnik geeignet.

Die Strahlquelle sendet Licht im blauen Spektralbereich bei 488 Nanometern (nm) aus – eine etablierte Wellenlänge für verschiedene spektros­kopische Methoden, wie beispielsweise die Raman-Spektroskopie. Die FBH-Lichtquelle hat eine Grundfläche von nur 25 x 5 Millimetern und ist damit deutlich kleiner als eine Streichholzschachtel.

Daher kann sie in ein Handgerät integriert werden und künftig tischgroße und damit unbewegliche Argon-Ionen-Laser, die bislang als Anregungsquelle für derartige Anwendungen eingesetzt werden, ersetzen. Darüber hinaus ist die Mikrosystemlichtquelle besonders energieeffizient: Mit einer optischen Ausgangsleistung von 50 Milliwatt bei einer elektrischen Gesamtleistung von unter einem Watt verbraucht sie so wenig Energie, dass ein Analytiksystem mit Akkus betrieben werden kann – eine weitere Voraussetzung für den mobilen Einsatz.

Möglich wird die kompakte Größe durch den mikrosystemtechnischen Aufbau. Dabei kommt ein so genannter DFB-RW-Laser zum Einsatz. Dieser Diodenlaser emittiert Licht bei 976 nm, das über Mikrooptiken in einen Kristall zur Frequenzverdopplung geleitet wird, bei der das infrarote Licht in blaues Licht umgewandelt wird. Im Kristall wird der Strahl durch einen nur 3 Mikrometer (µm) x 5 µm großen Wellenleiter geführt, der die Effizienz deutlich erhöht. Aufgrund der äußerst geringen Abmessungen besteht die Herausforderung in der hochpräzisen Montagetechnik und Justierung der einzelnen Komponenten. Wie exakt gearbeitet werden muss, zeigt der Vergleich mit einem menschlichen Haar, das einen Durchmesser von etwa 50 µm hat und damit mehr als 10-mal größer ist als der Eingang des Wellenleiters, in den der Strahl fokussiert wird. Die Mikrosystemquelle benötigt zudem kein kompliziertes Wärmemanagement. Laser und Kristall werden so gewählt, dass sich beide Komponenten bei Temperaturänderungen nahezu gleich verhalten. Auf sonst übliche zusätzliche Elemente, wie beispielsweise Temperatursensoren, die den Aufbau komplizierter und fehleranfälliger machen, kann daher verzichtet werden.

Erste Praxistests hat die FBH-Mikrosystemquelle bereits erfolgreich gemeistert. Messungen, die gemeinsam mit dem Institut für Optik und atomare Physik der TU Berlin durchgeführt wurden, haben die gute Eignung für die in-situ Raman-Spektroskopie, die an Ort und Stelle durchgeführt wird, bestätigt. Die Ergebnisse belegen darüber hinaus neue Perspektiven für die empfindliche Spurenanalytik, da die Lichtquelle das Potenzial hat, geringste Konzentrationen bestimmter Stoffe nachzuweisen.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics