Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NDSU Develops Innovative Laser-Enabled Electronic Packaging Technology

25.10.2011
Small. Fast. Precise. A new electronics manufacturing technology developed at North Dakota State University, Fargo, eliminates challenges facing conventional packaging techniques and shows promise to significantly reduce the size and unit cost of microelectronic devices.

The technology, called Laser-Enabled Advanced Packaging (LEAP™), has the potential to enable high-volume handling, placement and interconnection of microelectronic components smaller than ever before possible.

LEAP™ is a comprehensive wafer-to-product electronic packaging technology for high-throughput, low-cost, contactless assembly of ultrathin semiconductor chips onto rigid and flexible substrates. The technology has been under development by the Advanced Electronics Packaging research group at the North Dakota State University Center for Nanoscale Science and Engineering (CNSE), Fargo, N. D., since 2008.

Recently the NDSU researchers successfully implemented the LEAP™ technology to fabricate the first-ever functional electronic device with a laser-assembled, ultra-thin silicon chip embedded in a flexible substrate. The research group is led by Dr. Val Marinov, associate professor of manufacturing engineering; and includes Dr. Orven Swenson, associate professor of physics at NDSU; Ross Miller, research engineer apprentice; and CNSE research staff, graduate students and undergraduate research assistants.

A key part of LEAP™ is the patent-pending process, Thermo-Mechanical Selective Laser Assisted Die Transfer (tmSLADT™). This process selectively and rapidly places ultra-thin (

“The LEAP™ technology and tmSLADT™ process are important because they potentially enable a new class of inexpensive electronic devices by the high-volume placement and interconnection of various types of ultra-thin, fine pitch, active and passive circuit components,” said Aaron Reinholz, associate director for electronics technology at NDSU CNSE. “These types of components are especially of interest for flex substrate electronics, as they allow devices to bend, roll and be manipulated into complex geometries.”

Reinholz said application of the LEAP™ technology offers a new paradigm for numerous types of flexible and potentially disposable microelectronic devices, such as garment-integrated RFID tags, intelligent sensors platforms, and self-adapting conformal antennas. He added that this technology has strong potential in the near future outside of defense applications to reduce the unit cost of high volume single-chip devices such as RFID tags, smart cards, chip-and-pin bank cards and “smart” bank notes. According to CNSE researchers, the tmSLADT™ process also has potential value in microelectromechanical systems (MEMS) fabrication or other micro-assembly applications.

The LEAP™ technology is outlined in “Laser-Enabled Advanced Packaging of Ultrathin Bare Dice in Flexible Substrates” which has been accepted for publication by IEEE Transactions on Components, Packaging and Manufacturing Technology, manuscript TCPMT-2011-105. Another manuscript, “Noncontact Selective Laser-Assisted Placement of Thinned Semiconductor Dice,” is currently under peer review.

This material is based on research sponsored by the Defense Microelectronics Activity (DMEA) under agreement number H94003-11-2-1102. This press release does not necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.

For more information, contact aaron.reinholz@ndsu.edu

About NDSU CNSE
NDSU’s Center for Nanoscale Science and Engineering, Fargo, conducts multidisciplinary research with partners in government, industry, private and university sectors. CNSE’s scientific capabilities include flexible electronics and materials, electronics miniaturization, wireless sensors, RFID, bioactive materials, combinatorial science, and coatings technologies. www.ndsu.edu/cnse
About NDSU
North Dakota State University, Fargo, is notably listed among the nation’s top 108 public and private universities in the Carnegie Commission on Higher Education’s elite category of “Research Universities/Very High Research Activity.” As a student-focused, land grant, research institution with more than 14,000 students, NDSU is listed in the top 40 research universities in the U.S. without a medical school, based on research expenditures reported to the National Science Foundation. At the 55-acre NDSU Research & Technology Park, faculty, staff and students work with private sector researchers on leading-edge projects. www.ndsu.edu/research

Aaron Reinholz | Newswise Science News
Further information:
http://www.ndsu.edu/research

More articles from Power and Electrical Engineering:

nachricht Wireless power transfer achieved at 5-meter distance
17.04.2014 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht New 'tunable' semiconductors will allow better detectors, solar cells
14.04.2014 | Georgia State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer von Wälzlagern erhöhen

18.04.2014 | Veranstaltungen

Frühjahrsputz im Sommer – Noch einmal alles in die Reinigung!

18.04.2014 | Veranstaltungen

13. Karrieretag Familienunternehmen

18.04.2014 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Lebensdauer von Wälzlagern erhöhen

18.04.2014 | Veranstaltungsnachrichten

Frühjahrsputz im Sommer – Noch einmal alles in die Reinigung!

18.04.2014 | Veranstaltungsnachrichten

13. Karrieretag Familienunternehmen

18.04.2014 | Veranstaltungsnachrichten