Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Silber-Atom Licht ein- und ausschalten

01.02.2016

Forscher um Jürg Leuthold, Professor für Photonik und Kommunikation an der ETH Zürich, haben den kleinsten integriert optischen Schalter der Welt geschaffen. Durch das Anlegen einer kleinen Spannung wird ein Atom verschoben und der Schalter ist an- oder ausgeschaltet.

Die Menge an Daten, die weltweit über Kommunikationsnetzwerke ausgetauscht werden, steigt mit atemberaubender Rate an. Zurzeit nimmt die Datenmenge für drahtgebundene und mobile Kommunikation jedes Jahr um 23 beziehungsweise 57 Prozent zu. Ein Ende dieses Wachstums ist nicht absehbar. Das bedeutet aber auch, dass sämtliche Netzwerk-Komponenten immer effizienter werden müssen.


Der Schalter basiert auf der spannungsbedingten Verschiebung eines oder mehrerer Silberatome in den schmalen Spalt zwischen einer Silber- und einer Platinplatte.

Alexandros Emboras / ETH Zürich

Zu diesen Komponenten gehören sogenannte Modulatoren, welche die Information, die zunächst in elektrischer Form vorliegt, in optische Signale umwandeln. Modulatoren sind also nichts anderes als schnelle elektrische Schalter, welche ein Lasersignal im Takt der eingehenden elektrischen Signale an- oder ausschalten. Modulatoren werden in Rechenzentren zu Tausenden verbaut. Diese haben allerdings noch immer den Nachteil, dass sie ziemlich gross sind. Sie messen einige Zentimeter und brauchen, in grosser Zahl eingesetzt, viel Platz.

Vom Mikro- zum Nanomodulator

Dass es kleiner und energieeffizienter geht, bewies die Arbeitsgruppe von Jürg Leuthold, Professor für Photonik und Kommunikation, schon vor einem halben Jahr. Damals stellten die Forscher einen Mikromodulator vor, der nur noch 10 Mikrometer misst und damit um den Faktor 10‘000 kleiner ist als kommerziell verwendete Modulatoren (siehe ETH-News).

Nun legen Leuthold und seine Mitarbeiter noch einen Zahn zu. Sie entwickelten den kleinsten optischen Modulator der Welt. Ihre neuste Entwicklung wurde soeben in der Fachzeitschrift «Nano Letters» vorgestellt.

Kleiner geht es wohl nicht mehr: Dieses Bauteil arbeitet auf dem Niveau von einzelnen Atomen. Dies entspricht einer weiteren Verkleinerung um den Faktor 1000, wenn man den Schalter samt Lichtleiter miteinbezieht. Der eigentliche Schalter ist allerdings noch kleiner – atomar klein. Der Modulator ist sogar wesentlich kleiner als die Wellenlänge des verwendeten Lichts. Für die optische Signalübertragung in der Telekommunikation wird Laserlicht von einer Wellenlänge von 1,55 Mikrometer benutzt. Normalerweise bestimmt diese Grösse die kleinstmögliche Dimension des Bauteils. «Bis vor kurzem hielt selbst ich es für unmöglich, dass wir dieses Limit noch unterbieten können», betont Leuthold.

Neuer Aufbau

Doch sein wissenschaftlicher Mitarbeiter Alexandros Emboras hat die Gesetze der Optik Lügen gestraft, indem er eine neue Anordnung für den Bau eines Modulators realisierte. Dieser Aufbau hat es ermöglicht, in die Grössenordnung von einzelnen Atomen vorzudringen, obwohl die Forscher Licht mit «Standard-Wellenlänge» verwendeten.

Emboras Modulator besteht aus zwei winzigen Plättchen, einem aus Silber und einem aus Platin, auf einem Lichtwellenleiter aus Silizium. Die beiden Plättchen sind in einem Abstand von bloss wenigen Nanometern nebeneinander angeordnet, wobei eine kleine Ausbuchtung des Silberplättchens in den Spalt hineinragt und das Platinplättchen beinahe berührt.

Kurzschluss dank Silberatom

Und so funktioniert der Modulator: Licht, das aus einer Glasfaser austritt, wird über den Lichtwellenleiter zum Eingang des Spalts geleitet. Über der metallischen Oberfläche wandelt sich das Licht in ein Oberflächen-Plasmon um. Von Plasmonen spricht man, wenn Licht die Energie an Elektronen der äussersten Atomschicht der Metalloberfläche abgibt und diese zu Schwingungen anregt.

Diese Elektronenoszillationen haben einen viel geringeren Durchmesser als der Lichtstrahl selbst. So können diese in den Spalt eindringen und die enge Stelle passieren. Auf der anderen Seite des Spaltes können die Elektronenschwingungen wieder in optische Signale umgewandelt werden.

Legt man nun an das Silberplättchen eine Spannung an, wandert ein einzelnes – höchstens aber ein paar wenige - Silberatom zur Spitze des Zahns und platzieren sich an dessen Ende. Dadurch werden die Silber- und Platinplättchen miteinander kurzgeschlossen, so dass zwischen ihnen ein elektrischer Strom fliesst. Dies schliesst das Schlupfloch für das Plasmon; der Schalter kippt und der Zustand wechselt von «An» auf «Aus» oder umgekehrt. Sobald die Spannung wieder unter einen gewissen Schwellenwert sinkt, wandert ein Silber-Atom zurück. Die Lücke öffnet sich, das Plasmon fliesst, der Schalter steht wieder auf «An». Dieser Vorgang lässt sich millionenfach wiederholen.

Der an dieser Arbeit beteiligte ETH-Professor Mathieu Luisier hat das System mit einem Hochleistungsrechner am CSCS in Lugano simuliert. Damit konnte er bestätigen, dass der Kurzschluss an der Spitze des Silberzahns aufgrund eines einzigen Atoms zustande kommt.

Echtes digitales Signal

Da sich das Plasmon nur entweder ganz oder gar nicht durch die Engstelle bewegt, entsteht ein echtes digitales Signal – eine Eins oder eine Null. «Damit erzielen wir eine digitale Schaltung wie bei einem Transistor. Nach einer solchen Lösung haben wir lange gesucht», sagt Leuthold.

Noch ist der Modulator nicht serienreif. Zwar hat er den Vorteil, dass er – anders als andere Geräte, die in diesen Dimensionen mit Quanteneffekten arbeiten –bei Raumtemperatur läuft. Doch für einen Modulator ist er noch recht langsam: Bis anhin funktioniert er nur für Schaltfrequenzen bis in den Megahertz-Bereich. Die ETH Forscher möchten ihn noch für Frequenzen im Giga- bis Terahertz-Bereich trimmen.

Lithographie-Verfahren verbessern

Auch die Lithografie-Methode, die Emboras für den Bau der Teile von Grund auf neu entwickelte, wollen sie weiter verbessern, so dass solche Bauteile in Zukunft zuverlässig erstellt werden können. Derzeit gelingt die Herstellung nur in einem von sechs Versuchen. Dies werten die Forscher allerdings bereits als Erfolg, da Lithographie-Verfahren auf der atomaren Skala Neuland sind.

Um die Forschung am Nano-Modulator weiterzuführen, hat Leuthold sein Team verstärkt. Um eine kommerziell verfügbare Lösung zu erarbeiten, wären jedoch mehr Ressourcen nötig, gibt er zu bedenken. Trotzdem ist der ETH-Professor überzeugt, mit seinem Team in den kommenden Jahren eine praktikable Lösung präsentieren zu können.

Literaturhinweis

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, Atomic Scale Plasmonic Switch, Nano Letters 16, 709-714 (2016). DOI: 10.1021/acs.nanolett.5b04537

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/02/atomarer-o...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Meilenstein in der Kreissägetechnologie
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht
07.12.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

11.12.2017 | Verfahrenstechnologie

Jenaer Wissenschaftler für Prostatakrebs-Forschung ausgezeichnet

11.12.2017 | Förderungen Preise

Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt

11.12.2017 | Biowissenschaften Chemie