Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Kristallen regenerativ Wasserstoff erzeugen

23.08.2016

Mit Kristallen regenerativ Wasserstoff erzeugen - Preisgekrönte Idee für die Nutzung von Niedertemperaturabwärme

Auf der E-MRS-Tagung 2016 in Lille wurde Herr Rico Belitz vom Fraunhofer THM in Freiberg mit dem „Best Poster Award“ im Symposium W – „Materials and Systems for Microenergy Harvesting and Storage“ – ausgezeichnet.


EMRS-Preisträger Rico Belitz vom THM Freiberg bestückt den Versuchsaufbau mit einem Mikroreaktor. Mit dem Aufbau konnte die Wasserstofferzeugung an pyroelektrischen Kristallen nachgewiesen werden.

Fraunhofer THM

Der Fraunhofer-Wissenschaftler konnte zeigen, dass sich mithilfe von speziellen Kristallen Wasserstoff gewinnen lässt. Bei diesen so genannten pyroelektrischen Kristallen führen von außen aufgeprägte Temperaturänderungen zu einer elektrischen Aufladung der Kristalloberflächen.

Dabei kann die Aufnahme von Ladungsträgern aus der Umgebung zur Kompensation der Oberflächenladungen ausgenutzt werden, um Wasserstoff aus Wasser zu erzeugen. Nach diesem Prinzip könnte zum Beispiel bislang ungenutzte Niedertemperaturabwärme in wertvolle chemische Energie umgewandelt werden.

Der Effekt der Pyroelektrizität war bereits in der Antike bekannt, die breite technische Umsetzung erfolgte allerdings erst in der Mitte des 20. Jahrhunderts mit der Entwicklung von Infrarot-Sensoren. Die Sensoren nutzen dabei die elektrische Aufladung der Oberflächen pyroelektrischer Materialien bei Wärmeeinwirkung aus.

Auf diesem Detektor-Prinzip basiert heute der am häufigsten verwendete Typ von Bewegungsmeldern. Aber auch Geräte zur berührungslosen Temperaturmessung, so genannte Strahlungsthermometer oder Pyrometer, benutzen kleine, pyroelektrische Kristalle. Strahlungsthermometer lassen sich z.B. bei der Bauthermografie zum Aufspüren von Wärmebrücken einsetzen.

Die Arbeiten am Fraunhofer THM verfolgen den Ansatz, pyroelektrische Kristalle im direkten Kontakt mit Wasser einem Temperaturwechsel auszusetzen. Die damit einhergehende Änderung der Oberflächenpotentiale von, z.B., Bariumtitanatkristallen (BaTiO3) ermöglicht eine Reaktion der adsorbierten Wasserstoff- und Sauerstoff-Ionen oder –Moleküle zur Bildung von gasförmigem Wasserstoff und Sauerstoff.

Eine vorab durchgeführte theoretische Studie zu diesem Prozess zeigte, dass dafür eine sehr große wirksame Oberfläche der pyroelektrischen Kristalle nötig ist und die Temperaturwechsel mit hoher Frequenz erfolgen müssen, um in den Bereich messbarer Wasserstoffkonzentrationen zu gelangen. Für eine relevante Produktionsmenge aus Sicht einer technischen Nutzung, zum Beispiel zur Wandlung von Niedertemperaturabwärme in chemische Energie, wären diese Werte noch weitaus größer. Rico Belitz und seine Kolleginnen und Kollegen vom Fraunhofer THM und vom Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. in Meinsberg hatten hier vorläufig das Ziel, das Funktionsprinzip mit einem Labordemonstrator nachzuweisen.

„Als pyroelektrisches Material wurde Bariumtitanat (BaTiO3) ausgewählt. In einem Temperaturfenster von 0 bis 120 °C liegt BaTiO3 in der pyroelektrisch wirkenden, tetragonalen Kristallphase vor, was sehr gut zum Temperaturniveau industrieller Abwärme in Rückkühlanlagen oder dem Rücklauf von Heizungssystemen passt“, erläutert Rico Belitz. Für die Versuche wurden zunächst grobe Kristallstücke in Mörsern zu Pulver gemahlen, um die wirksame Oberfläche zu erhöhen, und dann in einen kleinen, quaderförmigen Behälter gefüllt.

Nach der Polarisation, also dem Ausrichten der einzelnen elektrischen Dipole in jedem Pulverteilchen in einem elektrischen Feld, wurde der Behälter mit Wasser gefüllt und einer periodischen Temperaturänderung zwischen 40 und 70 °C ausgesetzt. Dies erfolgte in einem von Rico Belitz speziell dafür konzipierten Mini-Teststand. Um eine Beeinträchtigung durch den in der Atmosphäre enthaltenen Wasserstoff sicher auszuschließen, wurde die Apparatur vor Versuchsbeginn mit Stickstoff gespült.

Mit Hilfe eines hochempfindlichen Wasserstoff-Gassensors konnte nach einigen Durchläufen schließlich pyroelektrisch erzeugter Wasserstoff nachgewiesen werden, wenn auch in sehr geringen Mengen. „Dieses Ergebnis zeigt die prinzipielle Möglichkeit auf, pyroelektrische Kristalle zur Erzeugung von Wasserstoff einzusetzen. Für eine spätere technische Umsetzung ist jedoch noch weitere intensive Forschungsarbeit, insbesondere auch unter Verwendung alternativer pyroelektrischer Materialien, erforderlich“, stellt Rico Belitz klar.

Auf der E-MRS-Frühjahrstagung (E-MRS: European Materials Research Society) Anfang Mai 2016 in Lille, an der mehr als 2500 Materialwissenschaftler aus der ganzen Welt teilnahmen, präsentierte Rico Belitz seinen Prinzipnachweis der Wasserstofferzeugung durch pyroelektrische Kristalle erstmals der Öffentlichkeit. Der wissenschaftlich-technische Posterbeitrag begeisterte die wissenschaftliche Community so sehr, dass er mit dem „Best Poster Award“ im „Symposium W – Materials and Systems for Microenergy Harvesting and Storage“ ausgezeichnet wurde.

Auch wenn es noch ein langer Weg vom Nachweis der prinzipiellen Machbarkeit bis zur tatsächlichen Anwendung ist, zeigt sich doch das hohe wissenschaftlich-technische Interesse an innovativen Methoden zur Energieumwandlung, die einen Beitrag zur Energiewende leisten können. Die hier prämierte Arbeit hat ihren Ursprung in einer Zusammenarbeit zwischen dem Fraunhofer THM und der Technischen Universität Bergakademie Freiberg im Rahmen der Nachwuchsforschergruppe „PyroConvert“, die aus Mitteln der Europäischen Union und des Freistaates Sachsen gefördert wurde.

Ansprechpartner

Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

Fraunhofer THM

Das Fraunhofer-Technologiezentrum Halbleitermaterialien THM Freiberg betreibt Forschung und Entwicklung auf dem Gebiet der Halbleitermaterialien für die Photovoltaik und die Mikroelektronik. Das THM ist eine gemeinsame Einrichtung des Fraunhofer-Instituts für Integrierte Systeme und Bauelementetechnologie IISB in Erlangen und des Fraunhofer-Instituts für Solare Energiesysteme ISE in Freiburg. Es besteht eine enge Kooperation mit der Technischen Universität Bergakademie Freiberg auf dem Gebiet der Halbleiterherstellung und –charakterisierung. Ein Hauptziel ist die Unterstützung der regionalen Halbleitermaterialindustrie durch den Transfer wissenschaftlicher Erkenntnisse in die industrielle Verwertung.

Fraunhofer IISB

Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 250 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Weitere Informationen:

http://www.thm.fraunhofer.de Homepage Fraunhofer THM
http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB

Kommunikation | Fraunhofer-Gesellschaft

Weitere Berichte zu: BaTiO3 IISB Nanoelektronik Wasserstoff chemische Energie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Planungstool für die Energiewende: Open Source Plattform für Stromnetze
05.12.2016 | Technische Universität München

nachricht SmartMeter analysieren mit Algorithmen den Stromverbrauch
01.12.2016 | Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz