Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Energie und Rohstoffe aus Klärschlamm und Gärresten

17.12.2014

Klärschlamm, Grünabfälle, Produktionsreste aus der Lebensmittelindustrie, Stroh oder Tierexkremente – mit dem modularen Konzept der »Biobatterie« lässt sich eine erheblich größere Bandbreite von Biomasse energetisch verwerten als bisher. Forscher zeigen, dass sie mit diesem Verfahren organische Reststoffe in Strom, Wärme, gereinigtes Gas, motorentaugliches Öl und hochwertige Biokohle verwandeln können.

Biogasanlagen sind ein wichtiger Baustein für die dezentrale Energieversorgung. Sie erzeugen Strom aus nachwachsenden Rohstoffen und können die stark schwankende Wind- und Sonnenenergie ausgleichen. In Deutschland sind bereits 8000 Anlagen mit einer elektrischen Leistung von insgesamt 3,75 Megawatt in Betrieb – das entspricht etwa drei Kernkraftwerken. Aber die Anlagen haben auch einige Nachteile: Sie verarbeiten nur ein eingeschränktes Spektrum organischer Stoffe und stehen in Konkurrenz mit dem Anbau von Nahrungsmitteln.


Mit dem modularen Konzept der »Biobatterie« lässt sich eine erheblich größere Bandbreite von Biomasse energetisch verwerten als bisher.

Strom, Öl, Gas und Biokohle produzieren

Nun ist es Wissenschaftlerinnen und Wissenschaftlern vom Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT gelungen, die Effizienz der Biogasanlagen erheblich zu steigern. Das von ihnen entwickelte Biobatterie-Verfahren liefert nicht nur Strom und Wärme, sondern auch hochwertige Produkte, wie Gas, Öl und Pflanzenkohle. Diese können je nach Bedarf verwertet werden: etwa zur Stromerzeugung, als Schiffs- oder Flugzeugkraftstoff, als Beimischung zu Kraftstoffen oder als Düngemittel. Weiterverarbeitet liefern sie sogar Basisstoffe für die Chemische Industrie.

Die Biobatterie ist modular aufgebaut und besteht aus einem Pool umweltfreundlicher Technologien wie Biogasanlagen, thermischen Speichern, Vergasern und Motoren zur Stromerzeugung. Herzstück des Konzepts ist das thermo-katalytische Reforming (TCR®). Damit bauen die Experten Kohlenstoffe aus organischem Material wie beispielsweise Gärresten aus Biogasanlagen und der Bioethanolproduktion, industriellen Biomasseabfällen, Klärschlämme, Stroh, Holzreste oder Tierexkremente um. Das Ergebnis: Öl, Gas und Biokoks. »Der besondere Vorteil der Biobatterie ist, dass wir eine Vielzahl von Ausgangsstoffen verwerten können, die sonst oft aufwändig entsorgt werden müssten«, erklärt Professor Andreas Hornung, Leiter des UMSICHT am Institutsteil Sulzbach-Rosenberg.

Pilotanlage verarbeitet biogene Reststoffe

Dass dies auch in der Praxis funktioniert, zeigen die Forscherinnen und Forscher an einer Pilotanlage, die etwa 30 kg Gärreste in der Stunde verwertet. Die Ausgangsstoffe wandern zunächst durch eine Schleuse unter Sauerstoffausschluss in eine sich kontinuierlich drehende Schnecke. Dort wird das Material erhitzt und in Biokohle sowie flüchtige Dämpfe zerlegt. Die Dämpfe werden weiter erhitzt und dann wieder abgekühlt. Dabei kondensiert eine Flüssigkeit, die Bioöl und Prozesswasser enthält. Die Forscher trennen das hochwertige Öl ab, um es weiter zu nutzen. Das entstandene Gas wird gereinigt und aufgefangen.

Die flüssigen, gasförmigen und festen Produkte lassen sich vielfältig weiterverwerten. Das Öl kann entweder zu Schiffs- und Flugzeugkraftstoff verarbeitet werden oder in einem Blockheizkraftwerk – wie auch das Gas – für die Strom- und Wärmeerzeugung genutzt werden. Das abgetrennte Prozesswasser enthält zahlreiche kurzkettige, biologisch abbaubare Kohlenstoffverbindungen. Es kann wieder in die Biogasanlage zurückgeführt werden und so die Methanausbeute steigern. Die Biokohle eignet sich als Bodenverbesserer.

Aber arbeitet die Biobatterie auch effizient? »Die Anlage wandelt in einem robusten und kontinuierlichen Prozess über 75 Prozent des Energieeinsatzes in qualitativ hochwertige Energieträger um. Der Wirkungsgrad lässt sich noch weiter steigern, wenn man mobile Latentwärmespeicher einsetzt«, erklärt Hornung. Ein besonderer Vorteil der Biobatterie ist, dass sich das System stufenweise ausbauen lässt. »Das ist für die Betreiber finanziell sehr interessant. Denn für den Start sind keine hohen Investitionen notwendig, wie unsere Wirtschaftlichkeitsanalysen belegen«, führt Hornung aus. Die Susteen Technologies GmbH, eine Ausgründung von UMSICHT, setzt das Konzept Biobatterie bereits gemeinsam mit Kooperationspartnern im In- und Ausland in großen Pilotanlagen in die Praxis um.


Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2014/Dezember/mehr-energi... Per Klick auf diesen Link gelangen Sie zum Ansprechpartner

Britta Widmann | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie