Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Medical devices powered by the ear itself

For the first time, researchers power an implantable electronic device using an electrical potential — a natural battery — deep in the inner ear.

Deep in the inner ear of mammals is a natural battery — a chamber filled with ions that produces an electrical potential to drive neural signals.

In today’s issue of the journal Nature Biotechnology, a team of researchers from MIT, the Massachusetts Eye and Ear Infirmary (MEEI) and the Harvard-MIT Division of Health Sciences and Technology (HST) demonstrate for the first time that this battery could power implantable electronic devices without impairing hearing.

The devices could monitor biological activity in the ears of people with hearing or balance impairments, or responses to therapies. Eventually, they might even deliver therapies themselves.

In experiments, Konstantina Stankovic, an otologic surgeon at MEEI, and HST graduate student Andrew Lysaght implanted electrodes in the biological batteries in guinea pigs’ ears. Attached to the electrodes were low-power electronic devices developed by MIT’s Microsystems Technology Laboratories (MTL). After the implantation, the guinea pigs responded normally to hearing tests, and the devices were able to wirelessly transmit data about the chemical conditions of the ear to an external receiver.

“In the past, people have thought that the space where the high potential is located is inaccessible for implantable devices, because potentially it’s very dangerous if you encroach on it,” Stankovic says. “We have known for 60 years that this battery exists and that it’s really important for normal hearing, but nobody has attempted to use this battery to power useful electronics.”

The ear converts a mechanical force — the vibration of the eardrum — into an electrochemical signal that can be processed by the brain; the biological battery is the source of that signal’s current. Located in the part of the ear called the cochlea, the battery chamber is divided by a membrane, some of whose cells are specialized to pump ions. An imbalance of potassium and sodium ions on opposite sides of the membrane, together with the particular arrangement of the pumps, creates an electrical voltage.

Although the voltage is the highest in the body (outside of individual cells, at least), it’s still very low. Moreover, in order not to disrupt hearing, a device powered by the biological battery can harvest only a small fraction of its power. Low-power chips, however, are precisely the area of expertise of Anantha Chandrakasan’s group at MTL.

The MTL researchers — Chandrakasan, who heads MIT’s Department of Electrical Engineering and Computer Science; his former graduate student Patrick Mercier, who’s now an assistant professor at the University of California at San Diego; and Saurav Bandyopadhyay, a graduate student in Chandrakasan’s group — equipped their chip with an ultralow-power radio transmitter: After all, an implantable medical monitor wouldn’t be much use if there were no way to retrieve its measurements.

But while the radio is much more efficient than those found in cellphones, it still couldn’t run directly on the biological battery. So the MTL chip also includes power-conversion circuitry — like that in the boxy converters at the ends of many electronic devices’ power cables — that gradually builds up charge in a capacitor. The voltage of the biological battery fluctuates, but it would take the control circuit somewhere between 40 seconds and four minutes to amass enough charge to power the radio. The frequency of the signal was thus itself an indication of the electrochemical properties of the inner ear.

To reduce its power consumption, the control circuit had to be drastically simplified, but like the radio, it still required a higher voltage than the biological battery could provide. Once the control circuit was up and running, it could drive itself; the problem was getting it up and running.

The MTL researchers solve that problem with a one-time burst of radio waves. “In the very beginning, we need to kick-start it,” Chandrakasan says. “Once we do that, we can be self-sustaining. The control runs off the output.”

Stankovic, who still maintains an affiliation with HST, and Lysaght implanted electrodes attached to the MTL chip on both sides of the membrane in the biological battery of each guinea pig’s ear. In the experiments, the chip itself remained outside the guinea pig’s body, but it’s small enough to nestle in the cavity of the middle ear.

Cliff Megerian, chairman of the otolaryngology department at Case Western Reserve University, says that he sees three possible applications of the researchers’ work: in cochlear implants, diagnostics and implantable hearing aids. “The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant,” Megerian says. “Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output.”

“I’m not ready to say that the present iteration of this technology is ready,” Megerian cautions. But he adds that, “If we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future.”

The work was funded in part by the Focus Center Research Program, the National Institute on Deafness and Other Communication Disorders, and the Bertarelli Foundation.

Kimberly Allen | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Hybrid excavator uses diesel-electric drive
25.11.2015 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht “move“ – on course for the mobility of the future
25.11.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaik – vom Labor an die Fassade

Fraunhofer ISE demonstriert neue Zell- und Modultechnologien an der Außenfassade eines Laborgebäudes

Das Fraunhofer-Institut für Solare Energiesysteme ISE hat die Außenfassade eines seiner Laborgebäude mit 70 Photovoltaik-Modulen ausgerüstet. Die Module...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Follow Me: Forscher der Jacobs University steuern Unterwasser-Roboter erstmals durch Zeichensprache

Normalerweise werden Unterwasser-Roboter über lange Kabel von Booten oder von Land aus gesteuert. Forschern der Jacobs University in Bremen ist nun ein Durchbruch in der Mensch-Maschine-Kommunikation gelungen: Erstmals konnten sie einen Unterwasser-Roboter mit Hilfe von Gesten navigieren. Eine spezielle Kamera half dabei, die Zeichensprache in Befehle umzusetzen. Die Feldtests fanden im Rahmen des EU-geförderten Projektes CADDY „Cognitive Autonomous Diving buddy“ statt.

Archäologische Untersuchungen im Ozean und vergleichbare komplexe Forschungsprojekte unter Wasser sind auf die Unterstützung von Robotern angewiesen, um in...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser-Prozesssimulation erstmals auch als App verfügbar

Die Simulation von Prozessen bei der Lasermaterialbearbeitung ist in den letzten Jahren immer besser geworden. Die Software kann heute relativ gut voraussagen, was am Werkstück passiert. Leider ist sie hochkomplex und erfordert viel Rechenzeit. Durch eine clevere Vereinfachung können Experten vom Fraunhofer-Institut für Lasertechnik ILT erstmals eine Simulationssoftware anbieten, die Prozesse in Echtzeit rechnet und auch auf Tablets oder Smartphones läuft. Mit der schnellen Software lassen sich teure Versuche einsparen und noch besser optimale Prozessparameter finden.

Eine verlässliche Simulation von Laserprozessen war bislang eine Sache für Experten. Mit ausgefeilten Software-Paketen und viel Zeit auf Computerclustern...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Fraunhofer-Kongress »Urban Futures«: 2 Tage in der Stadt der Zukunft

25.11.2015 | Veranstaltungen

Internationale Mechatronik-Konferenz "REM2015" in Bochum

25.11.2015 | Veranstaltungen

Tagung über CFK-Bearbeitung geht in sechste Runde

25.11.2015 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Biophysik - Turbulente Bakterien

25.11.2015 | Biowissenschaften Chemie

Herbst-Stürme bringen erneut Salz in die Ostsee: Dritter Salzwassereinbruch in 1,5 Jahren

25.11.2015 | Geowissenschaften

Einblicke in die „dunkle Zone“

25.11.2015 | Biowissenschaften Chemie