Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Fingerabdruck zeigt Stromverlust in organischen Solarzellen an

26.10.2010
HZB-Forscher zeigen, warum lichterzeugter Strom in organischen Solarzellen teilweise verloren geht - Herkömmliche Solarzellen aus Silizium werden aufwendig und Energie intensiv hergestellt.

Organische Solarzellen sind kostengünstiger, produzieren aber bisher noch zu wenig Strom. Woran das liegt, ist bis heute nicht vollständig geklärt. Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben eine Methode entwickelt, die Stromverluste anhand des magnetischen Fingerabdrucks der stromtragenden Teilchen nachweist. Die Methode zeigt, dass der Stromfluss in der Solarzelle vom Spin der stromtragenden Teilchen abhängen kann.

Seit rund zehn Jahren beschäftigen sich Wissenschaftler mit organischen Solarzellen. Sie können umweltfreundlich hergestellt werden und lassen sich auf unterschiedlichste Materialien, zum Beispiel Plastikfolie, aufbringen. Verglichen mit Silizium-Solarzellen produzieren sie aber nur ein Fünftel der elektrischen Energie – ein Großteil des Stroms versickert im Material.

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben eine Methode entwickelt, die Stromverluste anhand des magnetischen Fingerabdrucks der stromtragenden Teilchen nachweist. Hierfür manipulieren die Forscher auf raffinierte Weise die magnetischen Eigenschaften dieser Teilchen. Gemeinsam mit schottischen Forschern publizieren sie dies in der Zeitschrift Physical Review Letters (10.1103/PhysRevLett.105.176601 / Phys. Rev. Lett. 105, 176601 (2010)).

Da organische Solarzellen aus Kohlenstoff-Verbindungen, also Kunststoffen, bestehen, werden sie auch Plastiksolarzellen genannt. Das Herz der Zelle bildet eine nur 100-Millionstel Millimeter dünne Schicht, die aus zwei Bestandteilen besteht: Polymere und fußballförmige Fullerene. Beide sind miteinander vermischt. Fällt Licht auf die Mischschicht, wird das Polymer in einen angeregten Zustand versetzt, den man Exziton nennt. Trifft ein Exziton auf ein Fußballmolekül springt ein Elektron auf das Fulleren und im Polymer verbleibt ein „Loch“. Damit Strom fließt, müssen die Elektronen und Löcher zu den Kontakten an den jeweils gegenüberliegenden Seiten der Solarzelle gelangen. Die Elektronen hüpfen über das Fulleren, die Löcher auf der Polymerkette. Die Löcher, Wissenschaftler nennen sie Polaronen, können sich auf diesem Weg gegenseitig behindern und senken dadurch den Wirkungsgrad der Solarzelle. Dieser gibt das Verhältnis zwischen gewonnener elektrischer und von der Sonne eingestrahlter Energie an.

Die Wissenschaftler konnten mit ihrer Methode, der elektrisch detektierten magnetischen Resonanz (EDMR), sichtbar machen, dass die Polaronen sich immer dann behindern, wenn ihr magnetisches Moment (Spin) identisch ist. „Wir konnten diese schon länger vermutete sogenannte Bipolaron-Bildung erstmals sichtbar machen und somit beweisen“, sagt Jan Behrends, der während seiner Promotion am HZB-Institut für Silizium-Photovoltaik die Messungen durchgeführt hat.

Bei der EDMR-Methode manipulieren die Forscher mit Hilfe eines äußeren Magnetfeldes und einer Mikrowelle den Spin der Polaronen. Durch einen Resonanzeffekt lässt sich der vorher zufällig verteilte Spin wie eine Kompassnadel drehen und gezielt beeinflussen. Die Messdaten zeigten, dass der Strom frei fließt, wenn die winzigen Magnete entgegengesetzt ausgerichtet sind und bei gleicher Ausrichtung blockiert wird.

Dank des neuen experimentellen Aufbaus der ursprünglich für Silizium entwickelten Methode, gelang es den Forschern, solche Stromverluste in Plastiksolarzellen bei Raumtemperatur nachzuweisen. „Mit dieser grundlegenden Erkenntnis könnten organische Solarzellen weiter verbessert werden, zum Beispiel indem man gezielt Kunststoffe entwickelt, die keine Spinblockade aufweisen“, sagt Projektleiter Dr. Klaus Lips.

Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.

Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.

Franziska Rott | Helmholtz-Zentrum
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v105/i17/e176601
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Licht ermöglicht „unmögliches“ n-Dotieren von organischen Halbleitern
23.11.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Leistungsfähigere und sicherere Batterien
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung