Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live-Schaltung ins Innere der Batterie

03.09.2014

Lithium-Ionen-Batterien gelten als Energiespeicher der Zukunft und sind vor allem für die Elektromobilität unverzichtbar. Sie haben die Fähigkeit, viel Energie zu speichern, sind aber vergleichsweise kompakt und leicht. Wenn sich beim Laden der Batterie allerdings metallisches Lithium bildet und ablagert, kann sich die Lebensdauer des Akkus verringern – oder sogar ein Kurzschluss auftreten. Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM) ist es nun gelungen, mithilfe von Neutronenstrahlen einen Blick in die Batterie zu werfen, ohne sie zu zerstören, und den Mechanismus des sogenannten Lithium-Platings aufzuklären.

Mobiltelefone, Digitalkameras, Camcorder, Notebooks: Sie alle werden mithilfe von Lithium-Ionen-Akkus betrieben. Diese zeichnen sich durch ihre hohe Energiedichte aus, sind aber trotzdem nicht zu schwer oder zu groß für die tragbaren Geräte.

"Ein Lithium-Ionen-Akku kann das Drei- bis Vierfache an Energie speichern im Vergleich zu einem gleich großen Nickel-Cadmium-Akku", erklärt Dr. habil. Ralph Gilles, Wissenschaftler an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM. Auch Temperaturschwankungen und längere Lagerung stellen für die Lithium-Ionen-Batterien kein Problem dar.

Aufgrund dieser Vorteile gelten die Akkus als Schlüsseltechnologie für die Elektromobilität. In nicht allzu ferner Zukunft sollen die Elektrofahrzeuge mit Kraftstoff-betankten Transportmitteln mithalten können – auch was die Reichweite betrifft. Dazu sind leistungsfähige, sichere und schnell aufladbare Akkus notwendig.

Lithium-Plating kann Kurzschluss verursachen

Ein bereits bekanntes, aber bisher nicht im Detail untersuchtes Phänomen steht diesem Ziel im Weg: Die Ablagerung von metallischem Lithium, das sogenannte Lithium-Plating.

Der Hintergrund: Die Energiespeicherung bei einem Lithium-Ionen-Akku funktioniert vereinfacht gesagt nach folgendem Prinzip. Sowohl der Pluspol (die Kathode) als auch der Minuspol (die Anode) haben die Fähigkeit, Lithium-Ionen zu binden. Während des Ladens zwingt das elektrische Feld die Ionen, von der Kathode zur Anode zu wandern. Beim Entladen dagegen strömen die Lithium-Ionen wieder zurück zur Kathode, wobei Energie frei wird.

Die Kathode in den Lithium-Ionen-Akkus besteht aus einem Lithium-Metall-Oxid, das Standardmaterial für den Minuspol der Batterie ist Graphit (Kohlenstoff), das eine Schichtstruktur aufweist. In diese Schichten lagern sich die Lithium-Ionen während des Ladens ein.

Nun kann es vorkommen, dass die Lithium-Ionen – statt sich wie erwünscht in die Anode einzulagern – metallisches Lithium bilden. Dieses Lithium lagert sich an die Anode an und steht damit zum Teil nicht mehr für den zuvor beschriebenen Prozess zur Verfügung. Das bedeutet, die Leistungsfähigkeit der Batterie ist vermindert. In extremen Fällen kann es sogar zu einem Kurzschluss kommen. Metallisches Lithium ist außerdem schnell entflammbar.

Zerstörungsfreie Untersuchung mithilfe von Neutronenstrahlen

Bisher war es nicht möglich, den Mechanismus des Lithium-Platings genau zu beobachten. Wird die Batterie geöffnet, kann immer nur eine Momentaufnahme des Zustands beobachtet werden, erklärt Gilles. Allerdings ändert sich die Menge des metallischen Lithiums laufend. Mithilfe von Neutronenstrahlen konnten die Wissenschaftler Dr. Veronika Zinth von der Forschungs-Neutronenquelle FRM II und Christian von Lüders vom Lehrstuhl für Elektrische Energiespeichertechnik die Prozesse in der Batterie live beobachten, ohne diese aufzuschneiden.

"Im Vergleich zu anderen Methoden kann man mittels Neutronendiffraktion genauere Aussagen treffen, wann wie stark das Lithium-Plating auftritt", erklärt Veronika Zinth.

Am Materialforschungsdiffraktometer STRESS-SPEC am FRM II bestrahlten die Forscher die Batterie während des Ladens und Entladens mit Neutronenstrahlen. Der einfallende Neutronenstrahl wird an der Batterie nach dem Gesetz der Braggschen Gleichung gebeugt und schließlich in einem Detektor aufgenommen. Anhand dieser Signale ermitteln die Wissenschaftler indirekt, wie viel metallisches Lithium sich gebildet hat.

Schnellere Ladung bedeutet mehr metallisches Lithium

Erste Ergebnisse der Messungen:

- Je schneller der Ladevorgang, desto mehr metallisches Lithium wird gebildet. Bis zu 19 Prozent der normalerweise am Lade- und Entladeprozess beteiligten Lithium-Ionen liegen dabei als metallisches Lithium vor. (Die Messung wurde bei -20 Grad Celsius durchgeführt.)

- In einer Pause von 20 Stunden nach einem schnellen Ladevorgang reagiert ein Teil des metallischen Lithiums wieder mit dem Graphit, Lithium-Ionen lagern sich in die Graphit-Schicht ein. Es handelt sich sozusagen um einen nachträglichen, langsamen Ladeprozess. Allerdings ist nur ein Teil des Lithium-Platings reversibel.

- Tiefe Temperaturen begünstigen die Bildung von metallischem Lithium.

Die Wissenschaftler planen weitere Experimente, die den Mechanismus des Lithium-Platings noch detaillierter aufklären sollen. Diese Ergebnisse könnten dabei helfen, herauszufinden, wie das Phänomen sich so gut wie möglich vermeiden lässt. Hierzu gehört auch die Beantwortung der Frage, wie schnell geladen werden kann, bevor Lithium-Plating einsetzt.

Die Studie ist Teil des BMBF-Projektes ExZellTUM (Exellenzzentrum für Batteriezellen). Das Projekt ExZellTUM betrachtet die Entwicklung neuer Energiespeichersysteme sowie neuer Fertigungsprozesse, Formierungsstrategien und Testtechnologien für deren Produktion. An dem Projekt sind der Lehrstuhl für Elektrische Energiespeichertechnik, das Institut für Werkzeugmaschinen und Betriebswissenschaften, der Lehrstuhl für Technische Elektrochemie und die Forschungs-Neutronenquelle Heinz Maier-Leibnitz beteiligt.

Publikation: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction, Veronika Zinth, Christian von Lüders, Michael Hofmann, Johannes Hattendorff, Irmgard Buchberger, Simon Erhard, Joana Rebelo-Kornmeier, Andreas Jossen, Ralph Gilles, Journal of Power Sources,
Doi: 10.1016/j.jpowsour.2014.07.168

Kontakt:
Dr. habil. Ralph Gilles
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Tel: +49 89-289-14665
ralph.gilles@frm2.tum.de
http://www.frm2.tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31756/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten