Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live-Schaltung ins Innere der Batterie

03.09.2014

Lithium-Ionen-Batterien gelten als Energiespeicher der Zukunft und sind vor allem für die Elektromobilität unverzichtbar. Sie haben die Fähigkeit, viel Energie zu speichern, sind aber vergleichsweise kompakt und leicht. Wenn sich beim Laden der Batterie allerdings metallisches Lithium bildet und ablagert, kann sich die Lebensdauer des Akkus verringern – oder sogar ein Kurzschluss auftreten. Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM) ist es nun gelungen, mithilfe von Neutronenstrahlen einen Blick in die Batterie zu werfen, ohne sie zu zerstören, und den Mechanismus des sogenannten Lithium-Platings aufzuklären.

Mobiltelefone, Digitalkameras, Camcorder, Notebooks: Sie alle werden mithilfe von Lithium-Ionen-Akkus betrieben. Diese zeichnen sich durch ihre hohe Energiedichte aus, sind aber trotzdem nicht zu schwer oder zu groß für die tragbaren Geräte.

"Ein Lithium-Ionen-Akku kann das Drei- bis Vierfache an Energie speichern im Vergleich zu einem gleich großen Nickel-Cadmium-Akku", erklärt Dr. habil. Ralph Gilles, Wissenschaftler an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM. Auch Temperaturschwankungen und längere Lagerung stellen für die Lithium-Ionen-Batterien kein Problem dar.

Aufgrund dieser Vorteile gelten die Akkus als Schlüsseltechnologie für die Elektromobilität. In nicht allzu ferner Zukunft sollen die Elektrofahrzeuge mit Kraftstoff-betankten Transportmitteln mithalten können – auch was die Reichweite betrifft. Dazu sind leistungsfähige, sichere und schnell aufladbare Akkus notwendig.

Lithium-Plating kann Kurzschluss verursachen

Ein bereits bekanntes, aber bisher nicht im Detail untersuchtes Phänomen steht diesem Ziel im Weg: Die Ablagerung von metallischem Lithium, das sogenannte Lithium-Plating.

Der Hintergrund: Die Energiespeicherung bei einem Lithium-Ionen-Akku funktioniert vereinfacht gesagt nach folgendem Prinzip. Sowohl der Pluspol (die Kathode) als auch der Minuspol (die Anode) haben die Fähigkeit, Lithium-Ionen zu binden. Während des Ladens zwingt das elektrische Feld die Ionen, von der Kathode zur Anode zu wandern. Beim Entladen dagegen strömen die Lithium-Ionen wieder zurück zur Kathode, wobei Energie frei wird.

Die Kathode in den Lithium-Ionen-Akkus besteht aus einem Lithium-Metall-Oxid, das Standardmaterial für den Minuspol der Batterie ist Graphit (Kohlenstoff), das eine Schichtstruktur aufweist. In diese Schichten lagern sich die Lithium-Ionen während des Ladens ein.

Nun kann es vorkommen, dass die Lithium-Ionen – statt sich wie erwünscht in die Anode einzulagern – metallisches Lithium bilden. Dieses Lithium lagert sich an die Anode an und steht damit zum Teil nicht mehr für den zuvor beschriebenen Prozess zur Verfügung. Das bedeutet, die Leistungsfähigkeit der Batterie ist vermindert. In extremen Fällen kann es sogar zu einem Kurzschluss kommen. Metallisches Lithium ist außerdem schnell entflammbar.

Zerstörungsfreie Untersuchung mithilfe von Neutronenstrahlen

Bisher war es nicht möglich, den Mechanismus des Lithium-Platings genau zu beobachten. Wird die Batterie geöffnet, kann immer nur eine Momentaufnahme des Zustands beobachtet werden, erklärt Gilles. Allerdings ändert sich die Menge des metallischen Lithiums laufend. Mithilfe von Neutronenstrahlen konnten die Wissenschaftler Dr. Veronika Zinth von der Forschungs-Neutronenquelle FRM II und Christian von Lüders vom Lehrstuhl für Elektrische Energiespeichertechnik die Prozesse in der Batterie live beobachten, ohne diese aufzuschneiden.

"Im Vergleich zu anderen Methoden kann man mittels Neutronendiffraktion genauere Aussagen treffen, wann wie stark das Lithium-Plating auftritt", erklärt Veronika Zinth.

Am Materialforschungsdiffraktometer STRESS-SPEC am FRM II bestrahlten die Forscher die Batterie während des Ladens und Entladens mit Neutronenstrahlen. Der einfallende Neutronenstrahl wird an der Batterie nach dem Gesetz der Braggschen Gleichung gebeugt und schließlich in einem Detektor aufgenommen. Anhand dieser Signale ermitteln die Wissenschaftler indirekt, wie viel metallisches Lithium sich gebildet hat.

Schnellere Ladung bedeutet mehr metallisches Lithium

Erste Ergebnisse der Messungen:

- Je schneller der Ladevorgang, desto mehr metallisches Lithium wird gebildet. Bis zu 19 Prozent der normalerweise am Lade- und Entladeprozess beteiligten Lithium-Ionen liegen dabei als metallisches Lithium vor. (Die Messung wurde bei -20 Grad Celsius durchgeführt.)

- In einer Pause von 20 Stunden nach einem schnellen Ladevorgang reagiert ein Teil des metallischen Lithiums wieder mit dem Graphit, Lithium-Ionen lagern sich in die Graphit-Schicht ein. Es handelt sich sozusagen um einen nachträglichen, langsamen Ladeprozess. Allerdings ist nur ein Teil des Lithium-Platings reversibel.

- Tiefe Temperaturen begünstigen die Bildung von metallischem Lithium.

Die Wissenschaftler planen weitere Experimente, die den Mechanismus des Lithium-Platings noch detaillierter aufklären sollen. Diese Ergebnisse könnten dabei helfen, herauszufinden, wie das Phänomen sich so gut wie möglich vermeiden lässt. Hierzu gehört auch die Beantwortung der Frage, wie schnell geladen werden kann, bevor Lithium-Plating einsetzt.

Die Studie ist Teil des BMBF-Projektes ExZellTUM (Exellenzzentrum für Batteriezellen). Das Projekt ExZellTUM betrachtet die Entwicklung neuer Energiespeichersysteme sowie neuer Fertigungsprozesse, Formierungsstrategien und Testtechnologien für deren Produktion. An dem Projekt sind der Lehrstuhl für Elektrische Energiespeichertechnik, das Institut für Werkzeugmaschinen und Betriebswissenschaften, der Lehrstuhl für Technische Elektrochemie und die Forschungs-Neutronenquelle Heinz Maier-Leibnitz beteiligt.

Publikation: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction, Veronika Zinth, Christian von Lüders, Michael Hofmann, Johannes Hattendorff, Irmgard Buchberger, Simon Erhard, Joana Rebelo-Kornmeier, Andreas Jossen, Ralph Gilles, Journal of Power Sources,
Doi: 10.1016/j.jpowsour.2014.07.168

Kontakt:
Dr. habil. Ralph Gilles
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Tel: +49 89-289-14665
ralph.gilles@frm2.tum.de
http://www.frm2.tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31756/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln
24.05.2018 | Technische Universität München

nachricht Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar
17.05.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics