Lichtausbreitung in Solarzelle sichtbar gemacht

Mittels eines Tricks ist es Jülicher Wissenschaftlern gelungen, einen direkten Blick auf die Lichtausbreitung innerhalb der Solarzelle zu werfen. Die Photovoltaik-Forscher beschäftigen sich mit periodischen Nanostrukturen, die den normalerweise nur schwach absorbierten Anteil des Sonnenlichts effizient einfangen.

Bis vor kurzem ließ sich der Lichteinfang innerhalb solcher periodisch nanostrukturierten Solarzellen nur mit indirekten Methoden analysieren, da das eingefangene Licht von außen eigentlich nicht sichtbar ist. Dass es sich trotzdem nachverfolgen lässt, liegt am quantenmechanische Tunneleffekt des Lichtes.

Dieser erlaubt es, dass Licht aus der Solarzelle nach draußen dringen kann, sobald eine lichtleitende Komponente in die unmittelbare Nähe der Oberfläche der Solarzelle gebracht wird. Über eine Glasfaserspitze konnten die Forscher mittels der sogenannten optischen Nahfeld-Mikroskopie daher das Licht messen, das eigentlich in der Solarzelle gefangen ist.

Der Lichteinfang spielt insbesondere eine wichtige Rolle bei der Optimierung von Dünnschicht-Solarzellen. Diese sind einfacher und mit geringerem Materialienaufwand herzustellen, besitzen aber derzeit noch einen schlechteren Wirkungsgrad als herkömmliche, kristalline Solarzellen.

Die Schicht, in der die Energiewandlung stattfindet, ist nur rund ein Tausendstel Millimeter dick. Längere Wellenlängen im Infrarotbereich werden bei direkter Einstrahlung daher nur schlecht absorbiert.

Mit periodisch nanostrukturierten Kontaktgrenzflächen lässt sich die Absorption des einfallenden Lichtes verbessern. Diese Grenzflächen koppeln einfallendes Licht in die dünne Siliziumschicht ein.

Mithilfe der neuen Messmethode konnten die Wissenschaftler vom Jülicher Institut für Energie- und Klimaforschung zeigen, dass ein direkter Zusammenhang zwischen der Beschaffenheit der Nanostruktur, der Absorption bestimmter Wellenlängen des Lichtes und insbesondere der Effizienz der Solarzellen besteht. Der in der Fachzeitschrift Nano Letters vorgestellte Ansatz eröffnet auch für die Erforschung verwandter nano-optischer Bauelemente eine Vielzahl neuer Möglichkeiten.

Originalpublikation:
Ulrich W. Paetzold, Stephan Lehnen, Karsten Bittkau, Uwe Rau, Reinhard Carius: Nanoscale Observation of Waveguide Modes Enhancing the Efficiency of Solar Cells. Nano Letters 11/2014; 14(11): 6599-6605. DOI: 10.1021/nl503249n
http://pubs.acs.org/doi/pdfplus/10.1021/nl503249n

Institut für Energie- und Klimaforschung, Bereich Photovoltaik (IEK-5):
http://www.fz-juelich.de/iek/iek-5/DE/Home/home_node.html

Media Contact

Erhard Zeiss Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer