Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leiterbahnen für Leuchtwunder

02.11.2010
Organische Leuchtdioden, kurz OLEDS, gelten als Basis für eine neue Lampengeneration: großflächig, beliebig formbar und flexibel in die Innenarchitektur integrierbar. Doch das »leuchtende Glas« ist derzeit noch sehr teuer. Forscher wollen die Lampen der Zukunft optimieren und den Preis durch ein neues Herstellungsverfahren senken.

Ein kurzer Druck auf den Lichtschalter – und die gesamte Decke leuchtet in einem gleichmäßigen, angenehmen Farbton. Noch gibt es diesen »leuchtenden Himmel« nicht zu kaufen, aber Forscher aus aller Welt arbeiten mit Hochdruck daran. Die Technik, die dahinter steckt, basiert auf organischen Leuchtdioden, kurz OLEDs.


Mit einem neuen Herstellungsverfahren lassen sich extrem feine Leiterbahnen auf Glas aufbringen. (© Fraunhofer ILT)

Diese verwenden spezielle Moleküle, die Licht aussenden, sobald Strom durch sie fließt. Zwar gibt es seit kurzem die ersten OLED-Leuchten zu kaufen, aber sie sind klein und teuer. Eine flache Scheibe mit einem Durchmesser von acht Zentimetern kostet rund 250 Euro. Experten des Fraunhofer-Instituts für Lasertechnik ILT in Aachen arbeiten jetzt gemeinsam mit Philips an einem Verfahren, mit dessen Hilfe die Lampen deutlich größer und billiger werden sollen – und damit tauglich für den Massenmarkt.

Die neuen Lampen sind vor allem wegen des aufwändigen Herstellungsprozesses teuer. Eine OLED-Leuchte besteht aus einem sandwichartigen Schichtaufbau: unten eine flächige Elektrode, darüber diverse Zwischenschichten, sowie die eigentliche Leuchtschicht aus organischen Molekülen. Den Abschluss bildet eine zweite Elektrode aus einem Spezialmaterial namens ITO (Indiumzinnoxid, engl. indium tin oxide). Gemeinsam mit der unteren Elektrode hat die ITO-Schicht die Aufgabe, die OLED-Moleküle mit Strom zu versorgen und dadurch zum Leuchten zu bringen. Das Problem: Die ITO-Elektrode ist nicht leitfähig genug, um den Strom gleichmäßig über eine größere Fläche zu verteilen.

Die Folge: Statt ein homogenes Leuchtbild abzugeben, nimmt die Helligkeit in der Mitte der Flächenleuchte sichtbar ab. »Um das auszugleichen, bringt man zusätzliche Leiterbahnen auf die ITO-Schicht auf«, sagt Christian Vedder, Projektleiter am ILT. »Diese Leiterbahnen bestehen aus Metall und verteilen den Strom gleichmäßig über die Fläche, so dass die Lampe homogen leuchtet.«

Üblicherweise werden die Leiterbahnen durch einen energieintensiven Aufdampfprozess aufgebracht: »Bei dieser Methode werden nur maximal zehn Prozent des aufgebrachten Metalls verwendet. Der große Rest einschließlich der chemischen Ätzmittel muss aufwändig entsorgt werden«, erklärt Christian Vedder. Anders bei dem neuen Verfahren der ILT-Forscher: Statt viel Material aufzudampfen und das meiste davon wieder zu entfernen, bringen die Wissenschaftler nur genau soviel Metall auf, wie benötigt wird. Zunächst legen sie eine Maskenfolie auf die Oberfl äche der ITO-Elektrode.

Dort, wo später die Leiterbahnen sein sollen, sind in der Maske mikrometerfeine Schlitze eingebracht. Auf diese Maske legen die Forscher eine dünne Metallfolie aus Aluminium, Kupfer oder Silber – dem Metall, aus dem die Leiterbahnen bestehen sollen. Danach fährt ein Laser mit einer Geschwindigkeit von mehreren Metern pro Sekunde das Leiterbahnmuster ab. Das Metall schmilzt und verdampft; der Dampfdruck sorgt dafür, dass die Schmelztropfen durch die feinen Ritzen in der Maske auf die ITO-Elektrode gedrückt werden.

Als Ergebnis entstehen extrem feine Leiterbahnen. Mit bis zu 40 Mikrometern sind sie deutlich schmaler als die 100 Mikrometer breiten Leiterbahnen, die man mit konventioneller Technik herstellen kann. »Im Labor konnten wir bereits zeigen, dass unsere Methode funktioniert«, erklärt Vedder. »Der nächste Schritt ist, das Verfahren gemeinsam mit unserem Partner Philips in die industrielle Praxis umzusetzen und eine Anlagentechnik zu entwickeln, mit der sich die Leiterbahnen im großen Maßstab kostengünstig aufbringen lassen.« In zwei bis drei Jahren könnte das neue Laserverfahren praxisreif sein.

Christian Vedder | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010/11/leiterbahnen-fuer-leuchtwunder.jsp

Weitere Berichte zu: Elektrode ILT ITO-Elektrode ITO-Schicht Leiterbahn Leuchtdiode Leuchtwunder Maske Metall Mikrometer Molekül

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise