Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leistungsfähigere und sicherere Batterien

23.11.2017

Forscher der Empa und der Universität Genf haben einen Prototypen einer neuartigen Natrium-Festkörperbatterie entwickelt, der in Zukunft Energie noch sicherer speichern soll.

Ob in Telefonen, Laptops oder Elektroautos, Batterien sind längst nicht mehr aus unserem Alltag wegzudenken. Um den Erwartungen der Verbraucher nachzukommen, werden sie ständig leichter, leistungsfähiger und langlebiger. Die kommerziell am weitesten verbreitete Lösung ist derzeit die Lithiumionen-Technologie.


Zusammensetzung der Natrium-Festkörperbatterie

Empa

Lithiumionen-Batterien sind aber immer noch relativ teuer und können bei falscher Handhabung ein Risiko darstellen. Gleichzeitig wächst die Nachfrage nach Batterien für den Einsatz in Elektroautos oder für die Speicherung erneuerbarer Energien. Mit dem Ziel, diesem Bedürfnis gerecht zu werden, haben Forscher der Empa und der Universität Genf (UNIGE) einen Prototypen einer so genannten Festkörperbatterie entwickelt.

Damit soll mehr Energie gespeichert und ein hohes Niveau an Sicherheit sowie Zuverlässigkeit gewährleistet werden können. Zudem basiert diese Batterie auf Natrium, einer kostengünstigeren Alternative zu Lithium. Nachzulesen sind diese Forschungsergebnisse in der Zeitschrift Energy and Environmental Science.

Eine Batterie besteht aus drei grundlegenden Komponenten: der Anode (negativer Pol), der Kathode (positiver Pol) und dem Elektrolyten. Die Akkus der meisten heutigen elektronischen Geräte basieren auf Lithiumionen. Beim Aufladen verlassen die Ionen die Kathode und wandern durch den flüssigen Elektrolyten zur Anode.

Damit sich keine Lithiumdendriten bilden - eine Art mikroskopisch kleiner Stalagmiten, die Kurzschlüsse in der Batterie auslösen und zu einem Brandrisiko führen können -, besteht bei den handelsüblichen Batterien die Anode aus Graphit und nicht aus metallischem Lithium, obwohl man mit diesem Ultraleichtmetall die gespeicherte Energiemenge steigern könnte.

Die Forschenden der Empa und der UNIGE haben ihren Fokus auf die Festkörperbatterie gelegt. Diese Technologie hat das Potenzial, die zunehmende Nachfrage der Wachstumsmärkte zu decken und gleichzeitig immer leistungsfähigere Akkus zu ermöglichen, die sich schneller laden lassen, eine grössere Energiemenge aufnehmen können und mehr Sicherheit bieten. Die Verwendung eines Festkörperelektrolyten kann Dendritenbildung unterdrücken, was wiederum den Einsatz von metallischen Anoden und somit höhere Energiedichten ermöglicht.

Ein nicht brennbarer Akku mit festem Natrium

«Wir benötigten jedoch noch einen geeigneten festen Ionenleiter, der chemisch sowie thermisch stabil und nicht toxisch ist. Er sollte ausserdem den Transport des Natriums von der Anode zur Kathode ermöglichen», erklärt Hans Hagemann, Professor am Departement für physikalische Chemie der Fakultät für Naturwissenschaften der UNIGE.

Die Forscher entdeckten, dass der borhaltigen Stoff closo-Boran den Natrium-Ionen erlaubt, relativ frei zu zirkulieren. Zudem ist closo-Boran ein anorganischer Elektrolyt, der im Vergleich zu den flüssigen Elektrolyten in Lithiumionen-Batterien nicht brennbar ist. Es handelt sich also um ein Material mit vielversprechenden Eigenschaften.

«Die Schwierigkeit bestand nun darin, einen engen Kontakt zwischen den drei Komponenten herzustellen: zwischen der Anode aus festem metallischem Natrium, der Kathode aus Natriumchromoxid sowie dem Elektrolyten, dem closo-Boran», erläutert Léo Duchêne, Wissenschaftler im Labor «Materials for Energy Conversion» der Empa und Doktorand am Departement für physikalische Chemie der Fakultät für Naturwissenschaften an der UNIGE.

Dazu lösten die Forschenden einen Teil des festen Elektrolyten in einem Lösungsmittel und fügten dann das Kathodenmaterial hinzu. Sobald das Lösungsmittel verdampft war, schichteten sie dieses kompakte Pulver mit dem Elektrolyten sowie der Anode auf und pressten die einzelnen Schichten zu einer festen Batterie zusammen.

Im Anschluss testeten die Wissenschaftler der Empa und der UNIGE die Batterie. «Die elektrochemische Stabilität des von uns hier eingesetzten Elektrolyts hält einer Spannung von drei Volt stand. Viele der früher untersuchten festen Elektrolyte werden bei diesem Wert bereits zersetzt», erklärt der Empa-Wissenschaftler Arndt Remhof, der dieses vom Schweizer Nationalfonds (SNF) und vom SCCER Heat & Eletricity Storage (SSCER-HaE) unterstützte Projekt leitet.

Die Wissenschaftler führten 250 Lade- und Entladezyklen an dem Akku durch, mit dem Ergebnis, dass danach noch 85 % der Energiekapazität verfügbar waren. "Für eine marktfähige Batterie müssen es jedoch 1200 Zyklen sein», merken die Forscher an. «Zudem müssen wir die Batterien bei Umgebungstemperatur testen, um nachweisen zu können, dass sich keine Dendriten bilden. Gleichzeitig wollen wir die Spannung weiter erhöhen. Unsere Arbeit ist also noch nicht abgeschlossen.»

Weitere Informationen:

https://www.empa.ch/web/s604/solid-state-battery

Karin Weinmann | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Netzspannung und Lastströme live und präzise im Blick
24.04.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics