Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebenserwartung von Solarmodulen vorhersagen

01.10.2013
Solarmodule sind diversen Umwelteinflüssen ausgesetzt, die über die Jahre das Material ermüden. Forscher haben ein Verfahren entwickelt, mit dem sich die Wirkung dieser Einflüsse langfristig berechnen lässt. Dies erlaubt zuverlässige Lebensdauerprognosen.

Wer in eine eigene Solaranlage auf dem Dach investiert, möchte in der Regel langfristig davon profitieren – doch wie alt wird die Technik eigentlich? Obwohl die meisten Hersteller ihren Kunden bis zu 25 Jahre Garantie gewähren, können sie selbst keine verlässlichen Aussagen über die voraussichtliche Lebensdauer treffen.


Sensoren messen die Dehnungen, die an Solarmodulen entstehen. Aus diesen Daten lässt sich deren Lebensdauer errechnen.
© Fraunhofer IWM

Um zum Betrieb zugelassen zu werden, müssen die Module zwar bestimmte Normen erfüllen. Dazu werden sie in verschiedenen Versuchen hohen Temperaturen oder starken mechanischen Belastungen ausgesetzt. »Die Ergebnisse sagen aber lediglich etwas über die Robustheit eines fabrikneuen Exemplars gegenüber kurzzeitigen extremen Belastungen aus.

Für die tatsächliche Lebensdauer sind dagegen alterungsbedingte Effekte wie Materialermüdung relevant, die erst im Laufe der Zeit auftreten«, erklärt Alexander Fromm vom Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg.

Der Wissenschaftler arbeitet im Rahmen des vom BMU geförderten Projekts »Zuverlässigkeit von PV-Modulen II« an einem neuen Verfahren, das die Lebensdauer von Solarmodulen prognostiziert. »Bei unserem zweigleisigen Prinzip kombinieren wir reale Messdaten mit einer numerischen Simulation«, so Fromm. Dazu untersuchen die Freiburger zunächst im Feldtest, wie sich mechanische Belastungen auf die Anlage auswirken.

Denn Schneelasten, Temperaturschwankungen und Windböen erzeugen in den Modulen mechanische Spannungen beziehungsweise Dehnungen. Das führt langfristig zu einer Materialermüdung. Anfällig sind das Einbettmaterial aus Kunststoff und insbesondere die Zellverbinder – das sind dünne Bändchen aus Kupfer, über die die Solarzellen miteinander verknüpft sind. »Das ist, als würden sie eine Büroklammer immer auf und ab biegen. Irgendwann bricht sie«, erklärt Fromm.

Schon leichter Wind bewirkt Schwingung im Modul

Um die Einflüsse auf das Material erfassen zu können, haben die Forscher ein komplettes Solarmodul mit Sensoren ausgestattet, die über Widerstandsänderungen Dehnungen an der Oberfläche von Bauteilen messen. Daraus wiederum lassen sich mechanische Spannungen im Material berechnen. Bei der Auswertung stellten Fromm und sein Team fest, dass schon leichter Wind ausreicht, um im Modul eine Schwingung zu erzeugen. Diese Schwingung ist ausgeprägter, je höher die Umgebungstemperatur ist.

Darüber hinaus erhöht sich im Laufe der Zeit die Schwingungsfrequenz, da das Kunststoffmaterial durch UV-Strahlung steifer und spröder wird. »Die spannende Frage ist nun, wie sich diese Einflüsse langfristig auf die Lebensdauer der Komponenten auswirken. An dieser Stelle kommt unser Simulationstool ins Spiel«, so Fromm.

Dazu wird für das Solarmodul ein detailliertes 3D-Simulationsmodell erstellt. Auf Basis der Messergebnisse aus dem Feldtest lässt sich dann anhand von numerischen Berechnungen ableiten, wie umweltbedingte Einflüsse langfristig auf die Modulkomponenten wirken und welche mechanischen Spannungen im Material auftreten. »Wir haben anhand der Simulation beispielsweise herausgefunden, dass die UV-bedingte Versprödung eine weitaus größere Rolle bei der Materialermüdung spielt als bislang angenommen«, sagt Fromm. Um die Lebensdauer eines Moduls vorhersagen zu können, kombinieren die Forscher die Messwerte aus dem Feldversuch mit bekannten Festigkeits-Kennwerten der entsprechenden Materialien. Diese Zahlen sagen aus, ab welcher Belastung das Material voraussichtlich bricht oder sich ablöst.

Kein Massentest von der Stange

Das Verfahren ist ab sofort einsatzbereit. Um optimale und zuverlässige Prognosen zu erstellen, benötigen die Entwickler jedoch möglichst detaillierte Materialkenndaten und Informationen zur Geometrie des Moduls, das getestet werden soll. »Unser Verfahren bietet keinen Massentest von der Stange, sondern wird individuell auf den jeweiligen Kunden abgestimmt«, erklärt Fromm. Anhand ihrer Berechnungen können die Forscher dann nicht nur Aussagen zur voraussichtlichen Lebensdauer treffen. Es lassen sich auch Verbesserungspotenziale hinsichtlich Geometrie und Material aufzeigen oder die Auswirkungen von unterschiedlichen Materialien auf die mechanischen Spannungen im Modul vorhersagen.

Alexander Fromm | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Oktober/lebenserwartung-von-solarmodulen-vorhersagen-7.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie