Laserquelle für nanophotonische Biosensoren

Organischer Laser auf einem Silizium-Photonik-Chip: Eine optische Anregung von oben führt zu Laserlicht im Wellenleiter. KIT

„Dies ist das erste Mal, dass organische Laser auf einem Silizium-Photonik-Chip realisiert wurden“, berichtet Christian Koos, der am Institut für Photonik und Quantenelektronik (IPQ) und am Institut für Mikrostrukturtechnik (IMT) des KIT forscht. „Der Hauptvorteil der Laser besteht darin, dass sie sich in großen Stückzahlen kostengünstig herstellen lassen. Langfristig ist eine Fertigung zum Preis von einigen Cent pro Laser denkbar.“

Eine der wesentlichen Herausforderungen bei der Realisierung optischer Mikrochips besteht darin, eine Vielzahl verschiedener Bauteile kostengünstig auf einem gemeinsamen Substrat zu integrieren. Seit einigen Jahren ist es möglich, optische Bauelemente aus Silizium herzustellen.

Diese sogenannte Silizium-Photonik greift auf hochentwickelte nanotechnologische Fertigungsprozesse der Mikroelektronik zurück und ermöglicht es damit, leistungsfähige photonische Bauteile in großen Stückzahlen und zu günstigen Kosten herzustellen. Solche Bauteile, deren Größe nur noch Bruchteile von Mikrometern betragen, können nicht nur dazu beitragen, die Informationstechnik energieeffizienter zu machen, sondern eignen sich auch sehr gut für kompakte Biosensoren.

Lichtquellen auf dem Chip zu realisieren war bisher ein ungelöstes Problem, da sich der Halbleiter Silizium aufgrund seiner elektronischen Struktur kaum als Lichtemitter eignet – beim Übergang von Elektronen zwischen energetisch unterschiedlichen Zuständen wird die freiwerdende Energie bevorzugt als Wärme und nicht als Licht abgegeben.

Forscher des KIT haben nun eine neuartige Klasse von Lasern im Infrarotbereich entwickelt. Sie kombinieren dazu Silizium-Nanowellenleiter mit einem Polymer, dem ein organischer Farbstoff beigemischt ist. Die Energie zum Betrieb dieses „organischen“ Lasers wird von oben, senkrecht zur Chip-Fläche, mit einer gepulsten Lichtquelle zugeführt.

Das entstehende Laserlicht wird direkt in einen Silizium-Nanowellenleiter eingekoppelt. Es gelang den Forschern, gepulste Laserstrahlung mit einer Wellenlänge von 1 310 Nanometern und einer Spitzenleistung von mehr als 1 Watt auf einem Chip zu erzeugen. In der Zeitschrift Nature Communications stellen die Wissenschaftler die neuen Infrarot-Laser vor. Durch den Einsatz verschiedener Farbstoffe und Laser-Resonatoren lässt sich die Wellenlänge der Laserstrahlung über einen breiten Bereich variieren.

Die Bauteile könnten unter anderem Biosensoren mit einer Vielzahl integrierter Laserlichtquellen ermöglichen, deren Wellenlänge auf den speziellen Anwendungsfall angepasst ist. Solche Chips enthalten Sensoren, die medizinisch relevante Substanzen messen. Um Kontaminationen zu vermeiden, ist es vorteilhaft, diese Chips möglichst kostengünstig herzustellen und nur einmal zu verwenden. Das ermöglicht den Einsatz direkt am Patienten oder in Arztpraxen (Point-of-care-Diagnostik).

Dietmar Korn, Matthias Lauermann, Sebastian Koeber, Patrick Appel, Luca Alloatti, Robert Palmer, Pieter Dumon, Wolfgang Freude, Juerg Leuthold & Christian Koos: Lasing in silicon-organic hybrid waveguides. Nature Communications, 2016. DOI: 10.1038/ncomms10864

Weiterer Kontakt:

Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

http://www.kit.edu

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer