Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser macht Glühbirnen effizienter

02.06.2009
Feinstrukturierung von Glühfaden steigert Lichtausbeute

Hochleistungs-Laser sind der Schlüssel, um klassische Glühbirnen deutlich effizienter als bisher zu machen. Wie Forscher der University of Rochester gezeigt haben, kann per Laser der Wolfram-Glühfaden entsprechend strukturiert werden. Damit sei es möglich, die Helligkeit einer 100-Watt-Glühlampe bei geringerem Stromverbrauch als bei einer 60-Watt-Birne zu erreichen.

Der Preis bleibt laut University of Rochester geringer als jener von fluoreszierenden Beleuchtungslösungen, während das abgestrahlte Licht angenehmer wirkt. Da der genutzte Femtosekunden-Laser über eine normale Steckdose versorgt werden kann, sollte der Prozess nach weiterer Verfeinerung auch leicht allgemeiner umsetzbar sein.

"Wir haben damit experimentiert, wie ultraschnelle Laser Metalle verändern, und uns gefragt, was passiert, wenn wir den Laser auf einen Glühfaden richten", beschreibt Chunlei Guo, Assistenzprofessor für Optik an der University of Rochester. Der Laserstrahl wurde durch das Glas der Glühbirne abgefeuert, um ein kleines Stück des Glühfadens zubearbeiten. "Als wir die Glühbirne eingeschaltet haben, konnten wir sehen, dass dieser Bereich eindeutig heller war als der Rest des Fadens", sagt Guo. Der Energieverbrauch sei allerdings unverändert geblieben. Man habe zwar erwartet, dass der Ansatz funktioniert, sei aber überrascht gewesen, wie viel heller der bearbeitete Glühfaden-Bereich wurde.

Der Schlüssel zum Erfolg sind extrem kurze, hochintensive Femtosekunden-Laserpulse, also Pulse, die nur wenige Billiardstel Sekunden dauern. In diesem kurzen Zeitraum wird massiv Energie auf einem nadelspitzengroßen Punkt freigesetzt. Dadurch entstehen an der Oberfläche des Wolfram-Fadens Nano- und Mikrostrukturen, welche die Effizienz der Lichtabstrahlung entscheidend beeinflussen. Im Prinzip ist das die Umkehrung eines Prozesses, mit dem Guo und sein Team 2006 ein Metall in einen hocheffizienten, schwarzen Lichtabsorber verwandelt haben. Neben der Helligkeit der Glühbirne lässt sich durch die Laserstrukturierung auch die Lichtfarbe beeinflussen. Bislang sind blaue Glühbirnen noch außer Reichweite, doch das an sich gelbliche Licht eines Wolfram-Glühfadens konnte bereits in Richtung Weiß verschoben werden. Außerdem haben es die Wissenschaftler geschafft, dass ein Glühfaden aufgrund von engen, parallelen Nanostrukturen teilweise polarisiertes Licht abgibt. Nun untersuchen die Forscher, ob sie noch weitere Eigenschaften von Glühbirnen per Laser beeinflussen können.

Günther Brauner, Vorstand des Instituts für Elektrische Anlagen und Energiewirtschaft der Technischen Universität Wien http://www.ea.tuwien.ac.at , gibt sich im Gespräch mit pressetext skeptisch, ob eine so hohe Effizienzsteigerung bei klassischen Glühbirnen wirklich erreichbar ist. Jedenfalls lässt er das Argument des angenehmeren Lichts nicht gelten. "Es gibt inzwischen Energiesparlampen, die den Tageslichtcharakter gut nachempfinden", betont der Wissenschaftler. Dafür zahlen sie zwar mit einer etwas geringeren Effizienz, doch klassische Glühbirnen würden immer noch klar ausgestochen. Auch das Argument, dass Energiesparlampen über längere Zeit eingeschaltet bleiben sollen, zieht nicht mehr.

"Es gibt inzwischen spezielle Facility-Lampen, die beliebig ein- und ausgeschaltet werden können", erklärt Brauner. Sie sind somit für Gänge oder Nassräume bestens geeignet. Auch, wenn die aus Rochester gemeldete Effizienzsteigerung bei klassischen Glühlampen wirklich erzielt werden kann, dürfte sie die Glühbirne vor dem auf EU-Ebene beschlossenen Aus kaum retten.

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.rochester.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics