Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Längeres Leben für Lithium-Schwefel-Batterien

02.04.2013
Elektroautos haben nach wie vor einen schweren Stand auf Deutschlands Straßen. Die Fahrzeuge sind zu teuer und ihre Reichweite zu gering. Doch jetzt ist ein Durchbruch bei der leistungsfähigen und kostengünstigen Lithium-Schwefel-Batterie gelungen.

Mehr als 40 Millionen Autos rollen derzeit über Deutschlands Straßen. Lediglich ein Bruchteil davon fährt jedoch mit elektrischer Energie. Rund 6400 Fahrzeuge sind es aktuell laut Verkehrsministerium. Die Gründe liegen in der vergleichsweise geringen Reichweite und den hohen Kosten der Stromspeicher:


Beschichtung von Elektroden im Rolle-zu-Rolle-Verfahren: Die Forscher haben jetzt das Design von Anode und Kathode für Lithium-Schwefel-Batterieren optimiert. © Jürgen Jeibmann/Fraunhofer IWS

Käufer müssen nach wie vor mehrere Tausend Euro für die Akkus auf den Tisch legen und die Suche nach einer Aufladestation beginnt oft schon nach den ersten 100 Kilometern. Forscher tüfteln deshalb an effizienteren Technologien. Äußerst vielversprechend ist dabei die Lithium-Schwefel-Batterie. Sie ist wesentlich leistungsfähiger und kostengünstiger als die bislang bekanntere Lithium-Ionen-Variante. Doch bislang ist sie wegen ihrer geringen Lebensdauer noch in keinem Auto zu finden. Das könnte sich in absehbarer Zeit ändern.

Wissenschaftler am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden haben jetzt ein neues Batteriedesign entwickelt, dass die Aufladezyklen von Lithium-Schwefel-Akkus um das Siebenfache erhöht. »Bisher kam man bei Tests kaum über 200 Zyklen hinaus. Durch eine besondere Kombination aus Anoden- und Kathodenmaterial konnten wir nun die Lebensdauer von Lithium-Schwefel-Knopfzellen auf 1400 Zyklen ausdehnen«, beschreibt Dr. Holger Althues, Leiter »Chemische Oberflächentechnologie« am IWS den Durchbruch seines Teams. Die Anode ihres Prototyps besteht nicht – wie sonst üblich – aus metallischem Lithium, sondern aus einer Silizium-Kohlenstoff-Verbindung.
Diese ist wesentlich stabiler, da sie sich bei jedem Ladevorgang weniger verändert als das Lithium-Metall. Denn je stärker sich das Anodenmaterial verformt, desto mehr vermischt es sich mit dem flüssigen Elektrolyten, der zwischen Anode und Kathode liegt und den Strom transportiert. Bei diesem Vorgang zersetzt sich die Flüssigkeit in Gas und Feststoffe. Die Batterie trocknet aus. »Im Extremfall ›wächst‹ die Anode bis zur Kathode und sorgt mit einem Kurzschluss für den vollständigen Zusammenbruch der Batterie«, erklärt Althues.

Entscheidend für die Leistungsfähigkeit und Lebensdauer einer Batterie ist das Zusammenspiel von Anode und Kathode. Beim Lithium-Schwefel-Modell bildet elementarer Schwefel die Kathode. Der Vorteil: Schwefel ist im Vergleich zum knappen Kobalt – dem hauptsächlich in Lithium-Ionen-Batterien verwendeten Kathodenmaterial – in nahezu unbegrenzten Mengen verfügbar und dadurch günstiger. Doch auch der Schwefel tritt mit dem flüssigen Elektrolyt in Wechselwirkung. Die Leistungsfähigkeit der Batterie sinkt, im schlimmsten Fall verliert sie vollständig an Kapazität. Die Forscher am IWS nutzen poröse Kohlenstoffe, um diesen Vorgang zu entschleunigen. »Wir haben die Poren der Kohlenstoffe exakt angepasst, damit sich der Schwefel dort einlagern kann und sich langsamer mit dem Elektrolyt verbindet«, veranschaulicht Althues. Zusammen mit seinen Kollegen hat der Forscher eine Methode entwickelt, um diese speziellen Kathoden herzustellen.

Doppelt so weit fahren

Die Experten vom IWS messen die Leistungsfähigkeit einer Batterie in Watt-Stunden pro Kilogramm (Wh/kg). Von Lithium-Schwefel-Batterien versprechen sie sich langfristig eine Energiedichte von bis zu 600 Wh/kg. Zum Vergleich: Aktuell verwendete Lithium-Ionen-Akkus kommen lediglich auf maximal 250 Wh/kg. »Mittelfristig realistisch sind eher Zahlen um 500 Wh/kg. Das heißt, man kann bei identischem Batteriegewicht doppelt so weit fahren«, so Althues. Im Umkehrschluss sind deutlich leichtere Batteriemodelle möglich. Das ist nicht nur für Automobil-, sondern auch für Smartphone-Hersteller interessant: Die mobilen Alleskönner würden mit leichteren Akkus deutlich an Gewicht verlieren.

»Vielleicht macht Lithium-Schwefel ja sogar das elektrische Fliegen möglich. Bis dahin muss aber noch viel passieren«, ergänzt Althues. Aktuell arbeiten die Wissenschaftler daran, das Material weiter zu optimieren und es an größeren Batteriemodellen einzusetzen. Auch auf geeignete Herstellungsmethoden wollen sie ihr Augenmerk legen. Denn nur so besteht die Chance, dass die Technologie es in den Massenmarkt schafft und sich die Zahl der Elektroautos auf deutschen Straßen entscheidend vergrößert.

Dr. rer. nat.HolgerAlthues | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/April/laengeres-leben-fuer-lithium-schwefel-batterien.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie