Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Längeres Leben für Lithium-Schwefel-Batterien

02.04.2013
Elektroautos haben nach wie vor einen schweren Stand auf Deutschlands Straßen. Die Fahrzeuge sind zu teuer und ihre Reichweite zu gering. Doch jetzt ist ein Durchbruch bei der leistungsfähigen und kostengünstigen Lithium-Schwefel-Batterie gelungen.

Mehr als 40 Millionen Autos rollen derzeit über Deutschlands Straßen. Lediglich ein Bruchteil davon fährt jedoch mit elektrischer Energie. Rund 6400 Fahrzeuge sind es aktuell laut Verkehrsministerium. Die Gründe liegen in der vergleichsweise geringen Reichweite und den hohen Kosten der Stromspeicher:


Beschichtung von Elektroden im Rolle-zu-Rolle-Verfahren: Die Forscher haben jetzt das Design von Anode und Kathode für Lithium-Schwefel-Batterieren optimiert. © Jürgen Jeibmann/Fraunhofer IWS

Käufer müssen nach wie vor mehrere Tausend Euro für die Akkus auf den Tisch legen und die Suche nach einer Aufladestation beginnt oft schon nach den ersten 100 Kilometern. Forscher tüfteln deshalb an effizienteren Technologien. Äußerst vielversprechend ist dabei die Lithium-Schwefel-Batterie. Sie ist wesentlich leistungsfähiger und kostengünstiger als die bislang bekanntere Lithium-Ionen-Variante. Doch bislang ist sie wegen ihrer geringen Lebensdauer noch in keinem Auto zu finden. Das könnte sich in absehbarer Zeit ändern.

Wissenschaftler am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden haben jetzt ein neues Batteriedesign entwickelt, dass die Aufladezyklen von Lithium-Schwefel-Akkus um das Siebenfache erhöht. »Bisher kam man bei Tests kaum über 200 Zyklen hinaus. Durch eine besondere Kombination aus Anoden- und Kathodenmaterial konnten wir nun die Lebensdauer von Lithium-Schwefel-Knopfzellen auf 1400 Zyklen ausdehnen«, beschreibt Dr. Holger Althues, Leiter »Chemische Oberflächentechnologie« am IWS den Durchbruch seines Teams. Die Anode ihres Prototyps besteht nicht – wie sonst üblich – aus metallischem Lithium, sondern aus einer Silizium-Kohlenstoff-Verbindung.
Diese ist wesentlich stabiler, da sie sich bei jedem Ladevorgang weniger verändert als das Lithium-Metall. Denn je stärker sich das Anodenmaterial verformt, desto mehr vermischt es sich mit dem flüssigen Elektrolyten, der zwischen Anode und Kathode liegt und den Strom transportiert. Bei diesem Vorgang zersetzt sich die Flüssigkeit in Gas und Feststoffe. Die Batterie trocknet aus. »Im Extremfall ›wächst‹ die Anode bis zur Kathode und sorgt mit einem Kurzschluss für den vollständigen Zusammenbruch der Batterie«, erklärt Althues.

Entscheidend für die Leistungsfähigkeit und Lebensdauer einer Batterie ist das Zusammenspiel von Anode und Kathode. Beim Lithium-Schwefel-Modell bildet elementarer Schwefel die Kathode. Der Vorteil: Schwefel ist im Vergleich zum knappen Kobalt – dem hauptsächlich in Lithium-Ionen-Batterien verwendeten Kathodenmaterial – in nahezu unbegrenzten Mengen verfügbar und dadurch günstiger. Doch auch der Schwefel tritt mit dem flüssigen Elektrolyt in Wechselwirkung. Die Leistungsfähigkeit der Batterie sinkt, im schlimmsten Fall verliert sie vollständig an Kapazität. Die Forscher am IWS nutzen poröse Kohlenstoffe, um diesen Vorgang zu entschleunigen. »Wir haben die Poren der Kohlenstoffe exakt angepasst, damit sich der Schwefel dort einlagern kann und sich langsamer mit dem Elektrolyt verbindet«, veranschaulicht Althues. Zusammen mit seinen Kollegen hat der Forscher eine Methode entwickelt, um diese speziellen Kathoden herzustellen.

Doppelt so weit fahren

Die Experten vom IWS messen die Leistungsfähigkeit einer Batterie in Watt-Stunden pro Kilogramm (Wh/kg). Von Lithium-Schwefel-Batterien versprechen sie sich langfristig eine Energiedichte von bis zu 600 Wh/kg. Zum Vergleich: Aktuell verwendete Lithium-Ionen-Akkus kommen lediglich auf maximal 250 Wh/kg. »Mittelfristig realistisch sind eher Zahlen um 500 Wh/kg. Das heißt, man kann bei identischem Batteriegewicht doppelt so weit fahren«, so Althues. Im Umkehrschluss sind deutlich leichtere Batteriemodelle möglich. Das ist nicht nur für Automobil-, sondern auch für Smartphone-Hersteller interessant: Die mobilen Alleskönner würden mit leichteren Akkus deutlich an Gewicht verlieren.

»Vielleicht macht Lithium-Schwefel ja sogar das elektrische Fliegen möglich. Bis dahin muss aber noch viel passieren«, ergänzt Althues. Aktuell arbeiten die Wissenschaftler daran, das Material weiter zu optimieren und es an größeren Batteriemodellen einzusetzen. Auch auf geeignete Herstellungsmethoden wollen sie ihr Augenmerk legen. Denn nur so besteht die Chance, dass die Technologie es in den Massenmarkt schafft und sich die Zahl der Elektroautos auf deutschen Straßen entscheidend vergrößert.

Dr. rer. nat.HolgerAlthues | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/April/laengeres-leben-fuer-lithium-schwefel-batterien.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln
24.05.2018 | Technische Universität München

nachricht Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar
17.05.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics