Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristall-Hochzeit im Nanokosmos

22.07.2014

Nahezu perfekte Halbleiter-Kristalle in einem Silizium-Nanodraht einzubetten, dies ist Forschern des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der Technischen Universität (TU) Wien und der Marie-Sklodowska-Universität Lublin gelungen.

Mit der neuen Methode zur Herstellung von Hybrid-Nanodrähten könnten in Zukunft sehr schnelle und multifunktionale Recheneinheiten auf einem einzigen Chip untergebracht werden. Die Forschungsergebnisse werden in der Zeitschrift „Nano Research“ publiziert.


Das Indiumarsenid (grün-cyan) ist perfekt in den Nanodraht (blau) integriert. (Energiedispersive Röntgenspektroskopie) HZDR/Prucnal


In den Nanodraht eingebettet: Auch unter dem Transmissions-Elektronenmikroskop ist der Verbindungs-Halbleiter als Querstruktur gut zu erkennen. HZDR/Prucnal

Die Nano-Optoelektronik gilt als Grundpfeiler zukünftiger Chiptechnik, doch die Forschung steht dabei vor großen Herausforderungen: Einerseits müssen die elektronischen Bauelemente auf immer kleinerem Raum untergebracht werden.

Andererseits sollen auch sogenannte Verbindungs-Halbleiter in die üblichen Materialien eingebettet werden. Denn im Gegensatz zu Silizium besitzen solche Halbleiter besonders bewegliche Ladungsträger und könnten so die Leistungsfähigkeit modernster siliziumbasierter CMOS-Technik verbessern.

Wissenschaftler des HZDR, der TU Wien und der Marie-Sklodowska-Universität Lublin sind nun beiden Zielen einen Schritt näher gekommen: Sie integrierten Verbindungs-Halbleiter-Kristalle aus Indiumarsenid (InAs) in Silizium-Nanodrähte, welche sich ideal für die Konstruktion immer kompakterer Chips eignen.

Bislang lag in dieser Integration der Kristalle das größte Problem solcher „Hetero-Nanodrähte": Oberhalb des Nanometer-Bereiches sorgten Fehlanpassungen der Kristallgitter stets für sehr viele Defekte. Die Forscher erreichten jetzt erstmals eine nahezu perfekte Erzeugung und Einbettung der InAs-Kristalle in die Nanodrähte.

Implantierte Atome bilden Kristalle in der Flüssigphase

Zum Einsatz kamen dabei die Ionenstrahlsynthese und eine Wärmebehandlung mit Xenon-Blitzlampen, beides Techniken, bei denen das Ionenstrahlzentrum des HZDR über langjährige Erfahrung verfügt. Zunächst mussten die Wissenschaftler eine gewisse Menge an Atomen präzise per Ionenimplantation in die Drähte einbringen.

Innerhalb von nur 20 Millisekunden erfolgte dann die Wärmebehandlung des Siliziumdrahtes in seiner Flüssigphase. „Eine nur etwa 15 Nanometer dicke Siliziumoxid-Hülle hält den flüssigen Nanodraht in seiner Form“, erklärt der HZDR-Forscher Dr. Slawomir Prucnal, „während die implantierten Atome die Indiumarsenid-Kristalle bilden.“

Dr. Wolfgang Skorupa, der Leiter der Forschungsabteilung, fügt hinzu: „Die Atome diffundieren in der flüssigen Siliziumphase so schnell, dass sie innerhalb von wenigen Millisekunden makellose Einkristalle mit nahezu perfekten Grenzflächen zur Umgebung bilden.“ Als nächsten Schritt wollen die Wissenschaftler das Einbringen von Fremdatomen noch besser kontrollieren und zudem Größe und Verteilung der Kristalle optimieren.

Weitere Informationen:

https://www.hzdr.de/presse/nanodraht

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Linearpotentiometer LRW2/3 - Höchste Präzision bei vielen Messpunkten
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht Neues 100 kW-Wechselrichtermodul für B6-Standard halbiert Gewicht und Volumen
17.05.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie