Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kraftwerke für die Flugzeughülle

14.06.2011
Wie ein Nervensystem sollen Netze von Sensoren in Zukunft Flugzeuge durchziehen – und durch eine Entwicklung der EADS Deutschland GmbH in Kooperation mit der Technischen Universität (TU) Wien ist dazu keine äußere Stromversorgung mehr nötig.

Ein Flugzeug regelmäßig rundherum zu warten ist aufwändig. Viel einfacher ist es, wenn das Flugzeug von sich aus meldet, wo Wartung nötig ist. Eine denkbar gute Lösung ist ein Sensor-System, das sich dabei auch noch selbst mit Strom versorgt und somit von Kabeln unabhängig ist – und genau das wurde nun von der EADS Deutschland GmbH in Kooperation mit dem Institut für Sensor- und Aktuatorsysteme der TU Wien entwickelt.


Das Energie-Harvester-Modul
Schmid, Salomon, TU Wien

Für jeden einzelnen Sensor erzeugt ein thermoelektrischer Generator mit einem kleinen wärmespeichernden Wasserbehälter Strom – und zwar einfach aus dem Temperaturunterschied zwischen der bodennahen Luft und der eisigen Kälte in großer Flughöhe. Die neue Sensortechnik könnte nicht nur die Wartung vereinfachen, sondern auch den Flugkomfort für die Passagiere steigern.

Energieversorgung mit dem „Energie-Harvester-Modul“

Schon kleinere Kollisionen können leicht Schäden in der Flugzeugwand hervorrufen. Bei herkömmlichen Aluminiumflugzeugen entsteht eine Delle, und der Schaden ist sofort sichtbar. Bei modernen Kohlefasermaterialien ist das schwieriger. Feine, unsichtbare Risse können sich bilden, deren Erkennung in der Wartung aufwendig und kostenintensiv ist. Mit geeigneten Sensoren direkt an der Flugzeugwand ließe sich das aber gut überwachen. „Ein Problem bei den Sensoren ist die Energieversorgung: Hunderte Sensoren an der Flugzeugwand zu verkabeln ist kompliziert und teuer“, erklärt Professor Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. Aus diesem Grund entwickelte er gemeinsam mit Dominik Samson und Professor Thomas Becker von der EADS Deutschland GmbH die Idee des „thermoelektrischen Energieharvesters“ als zentrales Herzstück und Energiequelle, um weder auf Kabel noch auf Batterien angewiesen zu sein.

Temperaturunterschiede liefern elektrischen Strom

Wenn ein Flugzeug in eine Höhe von tausenden Metern aufsteigt, kühlt die Außenwand ab. „Aus dem Temperaturunterschied zwischen innen und außen können wir mit einem thermoelektrischen Generator direkt die elektrische Energie gewinnen, die ein Sensorelement benötigt“, erklärt Dominik Samson. Im Energie-Harvester-Modul befindet sich ein Wasserreservoir, das die Bodenwärme eine Weile speichert. Wasser ist dafür besonders gut geeignet, weil es eine hohe Energiemenge in Form von Wärme aufnehmen kann. Der Innenbereich des Moduls mit dem Wasserreservoir steht über den thermoelektrischen Generator in Kontakt mit der kalten Außenhaut. Das somit am Generator erzeugte Temperaturgefälle wird dort direkt zur Erzeugung einer elektrischen Spannung genutzt. Bei der Landung ist es genau umgekehrt: Das Flugzeug wärmt sich an der bodennahen Luft wieder auf, innen ist das Modul noch kalt – und wieder kann Strom erzeugt werden.

Wenn gerade keine Thermospannung entsteht, etwa unmittelbar beim Start und bei der Landung, regelt eine ausgeklügelte Elektronik die Speicherung und Abgabe der elektrischen Energie. Sowohl Elektronik als auch Komponenten für die Stromerzeugung und Energiespeicher haben nur einen geringen Platzbedarf: Sie passen bequem auf eine Handfläche und können somit problemlos in die Flugzeughülle eingebaut werden. Die genaue Größe lässt sich je nach Anwendung und Energiebedarf anpassen.

Ohne Kabel, ohne Batterie

Die gemessenen Daten kann der Sensor per Funk weitergeben – das macht ihn vollständig unabhängig von Verkabelung. Durch den Verzicht auf Kabel spart man nicht nur Wartungszeit, man minimiert auch Fehlerquellen und reduziert das Gewicht des Flugzeuges. Bei einem Flug kann der Energie-Harvester eine elektrische Energie von acht bis zehn Milliwattstunden bereitstellen, was für einen drahtlosen Sensorknoten völlig ausreicht. „Ein Flugzeug hat eine Lebensdauer von etwa dreißig Jahren. Würde man die Sensoren mit Batterien betreiben, bräuchte man für jeden von ihnen in dieser Zeit insgesamt etwa hundert Batterien“, rechnet Dominik Samson vor. Das würde bei einer großen Anzahl von Sensoren nicht nur Wartungsaufwand, sondern auch eine unnötig große Menge an Müll verursachen.

Die Idee, durch Temperaturunterschiede am Flugzeug Strom zu erzeugen, ließe sich auch noch auf andere Bereiche ausweiten: Sensoren könnten überwachen, ob die Passagiere angeschnallt oder die Tische hochgeklappt sind, oder per Funk könnte durch Knopfdruck der Flugbegleiter gerufen werden – und das alles ohne teure und komplizierte Verkabelung, betrieben nur aus der Körperwärme der Passagiere selbst. „Der erste, wichtige Schritt zur Bereitstellung von ausreichend Energie ist getan - wir sind zuversichtlich, dass die kabellose Sensortechnologie bald in vielen Flugzeugen mitfliegen wird“, meint Ulrich Schmid.

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften
29.03.2017 | Technische Universität Dresden

nachricht Elektromobilität: Forschungen des Fraunhofer LBF ebnen den Weg in die Alltagstauglichkeit
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten