Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kostengünstiges 245 GHz Gasspektroskopie-System mit integrierten SiGe-Chips entwickelt

11.06.2014

Wissenschaftler des IHP- Leibniz-Institut für innovative Mikroelektronik in Frankfurt (Oder) und des DLR - Deutsches Zentrum für Luft- und Raumfahrt aus Berlin, entwickelten ein kompaktes und kostengünstiges Sensorsystem für die Gasspektroskopie im Bereich um 245 GHz.

Dieses Sensorsystem verwendet erstmalig einen integrierten Silizium (Si)-Germanium(Ge)-Sender sowie einen integrierten SiGe-Empfänger. In der neuesten Ausgabe der renommierten Electronics Letters werden diese beiden 245 GHz SiGe-Chips und das dazugehörige Sensorsystem beschrieben und hochauflösende spektroskopische Messungen für Methanol präsentiert.


Laboraufbau des Systems mit Sender- und Empfängermodul und der Gasabsorptionszelle

Sender und Empfänger wurden in der siliziumbasierten Höchstfrequenz-Technologie des IHP kostengünstig hergestellt. In der neuesten Ausgabe der renommierten Electronics Letters werden diese beiden 245 GHz SiGe-Chips und das dazugehörige Sensorsystem beschrieben und hochauflösende spektroskopische Messungen für Methanol präsentiert.

Ein derartiges kostengünstiges Sensorsystem aus 245 GHz Gasspektroskopie-Systemen mit integrierten SiGe-Chips hat ein großes Anwendungspotential, z.B. im Sicherheitsbereich für den Nachweis toxischer Gase, aber auch für die Kontrolle chemischer Prozesse, wie z.B. des Plasmaätzens in der Halbleitertechnologie. Eine weitere potentielle Anwendung liegt im Einsatz im Gesundheitsbereich. Hier können durch die Durchführung einer Atemluftanalyse von Patienten, Lungenkrankheiten frühzeitig diagnostiziert werden.

Die Millimeterwellen-Absorptionsspektroskopie ist eine bekannte Labortechnik, die in der Labor-Molekülspektroskopie und in der Radioastronomie eingesetzt wird, um die Konzentration eines Moleküls absolut zu bestimmen. Auf Grund der bisherigen Strahlungsquellen als auch der Größe der Detektoren waren die Geräte unhandlich und sehr teuer. Seit einigen Jahren gibt es allerdings kommerzielle Strahlungsquellen, die auf der Vervielfachung von Mikrowellenfrequenzen basieren. Diese Systeme sind zwar kompakt, aber aufgrund ihrer aufwendigen Herstellung immer noch teuer.

Unlängst wurde von einer Forschergruppe aus den USA ein Gasspektroskopie-Sensorsystem für den Bereich von 210 GHz bis 270 GHz vorgestellt, das aus kommerziell verfügbaren mm-Wellen Komponenten aufgebaut ist. Die Kosten für ein derartiges System werden gegenwärtig durch die hohen Herstellungskosten für die mm-Wellen Komponenten dominiert. Die Herausforderung bestand deshalb darin, ein wesentlich preisgünstigeres Sensorsystem auf Basis einer integrierten Halbleitertechnologie wie der SiGe- oder CMOS-Technologie zu entwickeln.

Am IHP ist es gelungen, Prototypen eines Transmitters und Empfänger mit integrierter Antenne in SiGe-Technologie zu entwickeln, die im Frequenzbereich von 238 GHz bis 252 GHz arbeiten. Da in Si-Technologie ausgeführt, sind diese Komponenten mit in der Halbleiterindustrie etablierten Herstellungsverfahren kompatibel und können preiswert hergestellt werden. Damit wurde die technologische Basis für einen preiswerten Gas-Sensor geschaffen.

Inzwischen wurde am IHP in Zusammenarbeit mit dem DLR, Berlin ein Gasspektroskopie-System realisiert, welches einen 245 GHz SiGe-Sender- und einen Empfänger-Chip verwendet. Die Leistungsfähigkeit des Sensorsystems wurde anhand des gemessenen Absorptionsspektrums für Methanol nachgewiesen.

Der Demonstrator verwendet eine optische Bank, auf der das Sender- und Empfängermodul montiert wurden. Der effektive Antennengewinn für den Sender bzw. Empfänger wird durch eine Linse erhöht. Für die gasspektroskopischen Messungen wurde eine 0,6 m lange Gasabsorptionszelle zwischen das Sender- und das Empfängermodul gestellt. Das Zwischenfrequenzsignal des Empfängers wurde dann in Abhängigkeit von der Frequenz des Senders mittels kommerzieller Labormesstechnik aufgezeichnet.

Ein integrierter Lokaloszillator wurde sowohl für den Sender als auch für den Empfänger verwendet, wobei seine Frequenz mittels eines externen PLL (Phasenregelschleife)-Bausteins stabilisiert wurde. Die beiden PLL-Bausteine verwenden hierbei zwei Referenzfrequenzen mit konstantem Frequenzversatz, um für den Empfänger eine konstante Zwischenfrequenz während eines Frequenzdurchlaufes zu erreichen. Eine geringe Amplitudenänderung des Empfängersignals infolge von Gasabsorption kann so detektiert und in Abhängigkeit von der Senderfrequenz für die Gasspektroskopie abgespeichert werden.

Source: Electronics Letters, Volume 50, Issue 12, 05 June 2014, p. 881 – 882
DOI: 10.1049/el.2014.0625 , Print ISSN 0013-5194, Online ISSN 1350-911X

Weitere Informationen:

http://www.ihp-microelectronics.com

Heidrun Förster | Leibniz-Institut für innovative Mikroelektronik GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie