Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kostengünstigere Solarzellen - bald aus Sachsen?

14.02.2011
Forscher der TU Chemnitz und vier sächsische Firmen entwickeln Dünnschicht-Solarzellen auf Silizium-Basis - Massentaugliche Herstellung ist das Ziel

Eine technologische Revolution in der Photovoltaik planen Wissenschaftler der Technischen Universität Chemnitz gemeinsam mit vier mittelständischen sächsischen Unternehmen. Sie wollen ein kostengünstigeres Verfahren zur Herstellung von Dünnschicht-Solarzellen auf Silizium-Basis entwickeln. Der Grund: Derzeitige Solarzellen, die Sonnenenergie umweltschonend direkt in elektrische Energie umwandeln, haben einen relativ niedrigen Wirkungsgrad und hohe Herstellungskosten.

An der Professur Anorganische Chemie der TU Chemnitz werden unter Leitung von Prof. Dr. Heinrich Lang neuartige, siliziumorganische Verbindungen hergestellt. Anschließend werden sie auf entsprechende Substrate aufgebracht. Während die Chemiker dafür Sprühverfahren nutzen, verwendet die Professur Digitale Drucktechnologie und Bebilderungstechnik unter Leitung von Prof. Dr. Reinhard R. Baumann spezielle Druckverfahren. Diese Substrate lassen sich im Anschluss durch thermische bzw. photochemische Nachbehandlung in Halbleiterschichten umwandeln. Im Labor der Professur Halbleiterphysik werden Forscher um Prof. Dr. Dietrich R.T. Zahn die Schichten eingehend charakterisieren. Zudem befindet sich eine so genannte "In-Line Analytik" in der Entwicklung, mit der die erzeugten Schichten bereits während des Produktionsprozesses charakterisiert werden, was eine minimale Reaktionszeit zur Prozesskontrolle zulässt.

Die grundlegende Erforschung dieser neuen Technik an der TU Chemnitz wird durch Bundes- und Landesmittel gefördert. So entsteht in diesem Rahmen ein neues Chemielabor im Universitätsteil Straße der Nationen 62. "Das Projekt gliedert sich hervorragend in das Forschungsschwerpunktfeld "Smart Systems and Materials" der TU Chemnitz ein", versichert Zahn. Sobald die Grundlagenforschung abgeschlossen sei, soll das neue Verfahren mit Hilfe der Industriepartner zur Marktreife gebracht werden. Zu den beteiligten Unternehmen gehören das Institut für innovative Technologien ITW e. V. Chemnitz, die SIGMA Chemnitz GmbH, die SITEC Industrietechnologie GmbH Chemnitz und die DTF Technology GmbH Dresden.

"Das neue Verfahren bringt eine deutliche Zeit-, Material- und Energieeinsparung mit sich", sagt Hans Freitag, Mitglied der Geschäftsleitung der SIGMA Chemnitz GmbH. Ein wesentlicher Vorteil des Verfahrens liege in der extrem hohen Materialausbeute im Vergleich zu derzeit angewandten kostenintensive Vakuum-, Lithographie- sowie Hochtemperaturprozessen. „Dieser Effekt schlägt sich positiv in der Kostenstruktur nieder und ermöglicht aus Sicht der beteiligten Unternehmen künftig eine einfache, massentaugliche Herstellung“, ergänzt Freitag.

Weitere Informationen erteilen Prof. Dr. Dietrich R.T. Zahn, Telefon 0371 531-33036, E-Mail zahn@physik.tu-chemnitz.de, Prof. Dr. Heinrich Lang, Telefon 0371 531-31673, E-Mail heinrich.lang@chemie.tu-chemnitz.de sowie Hans Freitag, Telefon 0371 2371-102, E-Mail hans.freitag@sigma-chemnitz.de

Mario Steinebach | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Intelligente Bauteile für das Stromnetz der Zukunft
18.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Energie: Preiswertere, weniger toxische und recycelbare Lichtsensoren zur Wasserstoffherstellung
17.04.2018 | Wissenschaftliche Abteilung, Französische Botschaft in der Bundesrepublik Deutschland

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics