Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoffnanoröhren sollen Solarzellen effizienter machen

20.11.2012
EU-Forschungsprojekt POCAONTAS erhält 3,45 Mio. Euro für vier Jahre

Die Nutzung der Sonnenenergie spielt eine entscheidende Rolle für die Energiewende. Ein internationales Forscher-Konsortium arbeitet seit 1. November 2012 daran, die Leistungsfähigkeit von Solarzellen mithilfe von Kohlenstoffnanoröhren noch weiter zu verbessern.

Die Europäische Kommission fördert das Verbundprojekt namens POCAONTAS („Polymer-Carbon Nanotubes Active Systems for Photovoltaics”) mit rund 3,45 Mio. Euro für eine Laufzeit von vier Jahren.

Polymer-Photovoltaik-Zellen, die besonders ressourcenschonend in der Herstellung und im Recycling sind, sind leicht und flexibel und daher vielfältig einsetzbar. Eine Möglichkeit, diese Zellen effizienter zu machen – ihr Wirkungsgrad liegt derzeit bei 10 Prozent – , könnte in der Verbindung von Polymeren mit filigranen Hohlzylindern aus Kohlenstoff-Atomen, sogenannten Kohlenstoffnanoröhren (engl. carbon nanotubes, CNT), liegen.
POCAONTAS soll in den kommenden vier Jahren polymer-basierte Kohlenstoffmaterialien erforschen und ihr Potenzial für den Einsatz in Solarzellen bestimmen. Drei der zehn Projektpartner kommen aus Bayern: Prof. Dr. Tobias Hertel (Chemie) und Prof. Dr. Vladimir Dyakonov (Physik) von der Julius-Maximilians-Universität Würzburg sowie Prof. Dr. Achim Hartschuh (Chemie) von der Ludwig-Maximilians-Universität München gehören dem Konsortium an. Hinzu kommen eine Reihe assoziierter Partner, darunter mit Future Carbon, Belectric OPV GmbH (vormals Konarka Technologies GmbH) und der Bayerischen Forschungsallianz drei weitere bayerische Akteure. Die Koordination von POCAONTAS übernimmt das spanische Forschungsinstitut IMDEA (Instituto Madrileño de Estudios Avanzados).

Kohlenstoffnanoröhren haben drei entscheidende Eigenschaften, die zur Optimierung von Photovoltaikzellen beitragen können: Sie besitzen eine gute photochemische Stabilität und können damit möglicherweise einen langjährigen Gebrauch der Zellen sicherstellen. Zweitens absorbieren sie, anders als viele Polymere, nicht nur im sichtbaren, sondern auch im infraroten Spektralbereich des Sonnenlichts. Darüber hinaus weisen ihre Elektronen eine außergewöhnlich hohe Beweglichkeit auf, was den Hybrid-Zellen ebenfalls zugutekäme. Um dieses Potenzial im Hinblick auf verbesserte Solarzellen zu nutzen, ist eine detaillierte Kenntnis und nachfolgende Kontrolle des konkreten Zusammenspiels der Materialien nötig. In POCAONTAS möchten die Projektpartner dieses Zusammenspiel mithilfe modernster spektroskopischer Methoden erforschen.

POCAONTAS wird über ein sogenanntes „Initial Training Network“ (ITN) im 7. Forschungsrahmenprogramm der EU gefördert. Neben der Forschung hat das Projekt die umfassende Ausbildung von Doktoranden und Post-Doktoranden in der Wissenschaft und im industriellen Bereich im Fokus. Über Kurse und Workshops – lokal bei den jeweiligen Partnereinrichtungen beziehungsweise netzwerkweit – sollen neben fachlicher Expertise auch Fähigkeiten vermittelt werden, welche die jungen Wissenschaftler auf das Berufsleben vorbereiten. Die Bayerische Forschungsallianz unterstützte das Konsortium bei der Antragstellung und ist als assoziierter Partner für einen Teil der Ausbildung verantwortlich. Unter anderem bietet sie Workshops zu den Themen Forschungspolitik der EU, Projektakquise, erfolgreiche Antragstellung und Verbreitung von wissenschaftlichen Ergebnissen an.
Zur Bayerischen Forschungsallianz (BayFOR)
Die BayFOR berät und unterstützt Wissenschaftler aus bayerischen Hochschulen und Akteure aus der Wirtschaft umfassend beim Einwerben von europäischen Forschungsgeldern mit dem Ziel, den Wissenschafts- und Innovationsstandort Bayern im Forschungsraum Europa fortzuentwickeln. Der Schwerpunkt liegt auf dem aktuellen Forschungsrahmenprogramm (FP7) und Horizon 2020, dem künftigen Rahmenprogramm für Forschung und Innovation der EU. Im europäischen Beratungsnetzwerk für KMU, dem „Enterprise Europe Network“ (www.een-bayern.de), fungiert sie als Schnittstelle zwischen Wissenschaft und Wirtschaft. Daneben koordiniert die BayFOR die gemeinsamen Aktivitäten der Bayerischen Forschungsverbünde und unterstützt ihre Vernetzung auf europäischer Ebene. Sie beheimatet zudem die Wissenschaftliche Koordinierungsstelle Bayern-Québec/Alberta/International der Bayerischen Staatsregierung. Die BayFOR ist eine Partner-Organisation im bayerischen Haus der Forschung (www.hausderforschung.bayern.de) und wird vom Bayerischen Staatsministerium für Wissenschaft, Forschung und Kunst gefördert. Weitere Informationen finden Sie unter: www.bayfor.org

Kontakt:
Dipl.-Ing. Bohyun Katharina Lee
Wissenschaftliche Referentin Nanowissenschaften und -technologien
Bayerische Forschungsallianz
Tel.: +49 (0)89 9 90 18 88-132
E-Mail: lee@bayfor.org

Anita Schneider | idw
Weitere Informationen:
http://www.bayfor.org/
http://www.hausderforschung.bayern.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Intelligente Bauteile für das Stromnetz der Zukunft
18.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Energie: Preiswertere, weniger toxische und recycelbare Lichtsensoren zur Wasserstoffherstellung
17.04.2018 | Wissenschaftliche Abteilung, Französische Botschaft in der Bundesrepublik Deutschland

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics