Kohlenstoff-Zukunft der Elektronik rückt näher

Ein US-Forscherteam unter Leitung der Stanford University hat einen wichtiger Erfolg auf dem Weg zur praktischen Anwendung des atomdicken Kohlenstoff-Materials Graphen in der Elektronik erzielt.

Den Wissenschaftlern ist es erstmals gelungen, aus Graphen einen n-leitenden Transistor herzustellen, der dank einem Elektronenüberschuss funktioniert. Dazu wurde das Graphen mit Ammonium-Gas behandelt, um diese Halbleitereigenschaft zu erzielen.

„Da wird Chemie verwendet, um eine der großen Herausforderungen in der Elektrotechnik auf kleiner, nanoskaliger Ebene zu bewältigen“, sagt der am Projekt beteiligte Jing Guo, Assitenzprofessor für Elektro- und Computertechnik an der University of Florida (UF). Die Entwicklung könnte den Weg zu leistungsfähigeren, kompakteren Computerchips weisen.

Graphen ist ein Material, an dessen Anwendung intensiv geforscht wird und Wissenschaftler haben beispielsweise schon Speicherchips auf Graphen-Basis entwickelt (pressetext berichtete: http://pressetext.com/news/081222002/). Der neue Transistor ist laut UF insofern von großer Bedeutung, da bislang nur p-leitende Halbleiter aus Graphen realisiert wurden, also solche, die durch einen Elektronenmangel funktionieren. „Unsere Arbeit zeigt im Prinzip eine neue Methode auf, ein Graphen-Nanoband leitfähig zu machen“, sagt Gao.

Damit werde eine fundamentale Voraussetzung dafür erfüllt, Graphen für die Herstellung von Elektronik nutzbar zu machen. Denn mit dem n-leitenden Transistor hat das Forscherteam den notwendigen zweiten Grundbaustein für die Anwendung realisiert, so die UF. Damit ist Graphen ein Kandidat, die Miniaturisierung der Elektronik nach Ende der Silizium-Ära weiter voranzutreiben.

„Es wird in alle möglichen Richtungen versucht, was man mit Graphen machen könnte. Bei dieser Arbeit geht der Versuch in die richtige Richtung“, meint Andre Geim, Physiker an der University of Manchester http://www.man.ac.uk und 2004 Entdecker des Materials, gegenüber pressetext. Während die Physik von Graphen inzwischen einigermaßen gut erforscht sei, wisse man über chemische Eigenschaften trotz bisheriger Experimente noch relativ wenig. „Das US-Team zeigt, dass man Graphen wirklich durch eine chemische Reaktion mit Ammonium verändern kann, in diesem Fall speziell um Transistoren herzustellen“, sagt der Wissenschaftler.

In der Entwicklung steckt also großes Potenzial. „Es gibt aber noch große Herausforderungen dabei, unsere Arbeit wirklich in Produkte einfließen zu lassen“, betont jedoch Guo. Dazu zählt beispielsweise die Massenfertigung von Graphen-Halbleitern. Auch sei das Material noch so teuer, dass die Kosten erheblich reduziert werden müssten, so die UF. „Diese Arbeit ist erst der Anfang“, sagt daher auch Hongjie Dai, Chemieprofessor in Stanford und Leiter des Forscherteams. Ob Graphen tatsächlich die Zukunft der Elektronik nach dem Silizium-Zeitalter sein werde, könne noch gar nicht recht abgeschätzt werden, meint wiederum Gaim. „Die Graphen-Chemie – und hier ist die Arbeit von Dais Team ein wichtiger Schritt – kann wohl interessantere und unmittelbarere Anwendungen eröffnen als ultra-winzige Transistoren“, glaubt der Wissenschaftler.

Media Contact

Thomas Pichler pressetext.austria

Weitere Informationen:

http://www.ufl.edu

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer