Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleinster elektrooptischer Wandler der Welt

17.02.2014
Dank optischer Signale laufen Daten schnell um den Erdball.

Aber auch zwischen elektronischen Chips könnten digitale Informationen optisch schneller und energieeffizienter ausgetauscht werden. Dazu bedarf es jedoch einfacher Methoden, um von elektrischen zu optischen Signalen zu wechseln.


Auf eine Lichtwelle (o .li.) prägt der Wandler (gelb) aufgrund der angelegten Spannung digitale Bits auf (u. re.).So werden elektrische zu optischen Signalen.

Grafik: A. Melikyan/KIT

Im Fachmagazin Nature Photonics wurde nun ein Bauteil vorgestellt, das nur 29 Mikrometer lang ist und mit einer Rate von rund 40 Gigabit pro Sekunde Signale umwandelt. Damit ist er der kompakteste Hochgeschwindigkeits-Phasenmodulator der Welt. DOI: 10.1038/NPHOTON.2014.9

„Der Übergang vom elektrischen zum optischen Signal passiert immer näher am Prozessor“, sagt Jürg Leuthold, der die aktuelle Entwicklung am Karlsruher Institut für Technologie betreut hat und inzwischen an der ETH Zürich forscht. „Dadurch lassen sich Geschwindigkeitsvorteile erzielen, aber vor allem Leitungsverluste vermeiden. Dies wäre ein wichtiger Baustein, um den Energiebedarf der wachsenden Informationstechnologie zu dämpfen.“

Der elektrooptische Wandler besteht aus zwei parallelen Goldelektroden, die etwa 29 Mikrometer lang sind und durch einen etwa einen zehntel Mikrometer breiten Spalt getrennt sind. Der Aufbau ist also etwa so lang wie ein Drittel eines Haares breit ist und belegt Bruchteile der Querschnittsfläche eines Haares. An den Elektroden liegt eine Spannung an, die im Takt der digitalen Daten moduliert wird. Der Spalt ist mit einem elektro-optischen Kunststoff gefüllt, dessen Brechungsindex sich in Abhängigkeit von der Spannung verändert.

Zwei Wellenleiter aus Silizium führen das Licht zum Spalt bzw. von ihm weg. „Ein kontinuierlicher Lichtstrahl aus dem Leiter regt im Spalt elektromagnetische Oberflächenwellen, sogenannte Oberflächen-Plasmonen an“, erklärt Argishti Melikyan vom KIT, Erstautor der Veröffentlichung. „Durch die am Kunststoff anliegende Spannung werden die Oberflächenwellen moduliert. Nach Durchlaufen des Spalts treten diese als modulierter Lichtstrahl in den abführenden Lichtwellenleiter ein. In der Phase des Lichts sind dann die Datenbits codiert.“

In zahlreichen Tests wurde gezeigt, dass der elektrooptische Wandler verlässlich Datenströme mit rund 40 Gigabit pro Sekunde umsetzt. Er nutzt das auch im Breitbandglasfasernetz übliche Infrarotlicht mit der Wellenlänge von 1480-1600 Nanometer und zeigt auch bei Temperaturen bis 85 Grad Celsius keine Betriebsabweichung. Der vorgestellte Wandler ist der kleinste und kompakteste Hochgeschwindigkeits-Phasenmodulator der Welt. Zudem lässt er sich mit weitverbreiteten CMOS-Verfahren aus der Mikroelektronik herstellen und damit leicht in aktuelle Chiparchitekturen integrieren. „Das Bauteil vereint viele positive Eigenschaften anderer Systeme, wie etwa eine hohe Modulationsgeschwindindigkeit, Kompaktheit und Energieeffizienz. Zukünftig könnten plasmonische Bauteile zur Signalverarbeitung im Terahertz-Bereich verwendet werden“, sagt Christian Koos vom Karlsruher Institut für Technologie, Sprecher der Helmholtz International Research School of Teratronics (HIRST), die sich am KIT mit der Fusion photonischer und elektronischer Verfahren zur ultraschnellen Signalverarbeitung befasst. „Plasmonische Wandler würden zu Hunderten auf einen Chip passen und Datenraten von einigen Terabit pro Sekunde ermöglichen.“

Derzeit werden in Deutschland rund 10 Prozent des Stromes durch Informations- und Kommunikationstechnologien verbraucht, etwa durch Computer und Smartphones beim Nutzer, aber auch durch die Server in großen Rechenzentren. Da der Datenverkehr exponentiell anwächst, bedarf es neuer Ansätze, die den Durchsatz steigern und gleichzeitig den Energieverbrauch dämpfen. Plasmonische Bauteile könnten hier einen entscheidenden Beitrag liefern.

Der elektrooptische Wandler wurde im Rahmen des EU-Projekts NAVOLCHI, Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection, entwickelt. Ziel ist es, die Interaktion von Licht und Elektronen in Metalloberflächen auszunutzen, um neuartige Bauteile für die Datenübertragung zwischen Chips zu entwickeln. „Die elektrische Chip-zu-Chip-Datenübertragung stößt an ihre Grenzen“, sagt Projektleiter Manfred Kohl vom KIT. „NAVOLCHI schickt sich an diese mit optischen Technologien zu überwinden.“ Das Projekt wird im siebten Forschungs-Rahmenprogram der EU gefördert und verfügt über ein Budget von 3,4 Millionen Euro.

Weitere Informationen zum Projekt NAVOLCHI: http://www.imt.kit.edu/projects/navolchi/

High-speed plasmonic phase modulators, A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude and J. Leuthold, nature photonics AOP, DOI: 10.1038/NPHOTON.2014.9

http://www.nature.com/nphoton/index.html

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.nature.com/nphoton/index.html
http://www.imt.kit.edu/projects/navolchi/
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie