Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovative Transistorchips für Satelliten

06.10.2010
Nahezu jeder Haushalt nutzt die Rechenleistung von modernen Hochleistungschips.

Für spezielle Anwendungen suchen Forscher jedoch nicht nur nach immer kleineren und schnelleren Transistoren, sondern auch nach zuverlässigen Alternativen zu klassischen Siliziumchips. Am Ferdinand- Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, kommen neue Materialien und Designs auf den Prüfstand.


Am FBH realisierter Prototyp eines GaN-Flip- Chip-Leistungstransistors. Foto: FBH/schurian.com

Für Satelliten werden äußerst robuste Schalttransistoren benötigt, die sowohl den rauen Umgebungsbedingungen im Weltraum standhalten, als auch hohe Leistungen schalten können. Die Transistoren sind im All extremen Temperaturen, Erschütterungen und Strahlungen ausgesetzt.

Standardtransistoren auf Siliziumbasis sind strahlungsempfindlich und müssen daher mit hohem technischem Aufwand geschützt werden. Transistoren auf Basis von Galliumnitrid (GaN) dagegen sind deutlich robuster und können als kompakte Systeme mit weniger Gewicht und Volumen realisiert werden. Ein entscheidender Vorteil, da jedes Gramm und jeder Quadratmillimeter Fläche im Weltraum als Kostenfaktor zählt.

GaN-Transistoren werden bislang vor allem in Mikrowellenanwendungen eingesetzt. Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) verfügt auf diesem Gebiet über langjährige Erfahrungen. Eine Arbeitsgruppe des Instituts arbeitet nun an der Übertragung dieser Technologie auf die GaN-Leistungselektronik für Weltraumanwendungen. Dies erfordert Anpassungen in Prozess und Design, mit denen sich die Doktorandin Rimma Zhytnytska beschäftigt. Klassischerweise werden Transistoren auf Wärmesenken gelötet und mit winzigen Drähten elektrisch angeschlossen. Da diese Montagetechnik für Weltraumanwendungen zu störungsanfällig ist, greift Zhytnytska für ihren Prototyp auf die so genannte Flip-Chip- Technologie zurück, bei der Chip und Schaltungsträger mit einer großen Anzahl so genannter Bumps verbunden werden.

Bumps sind kleine Kontaktierhügel, zumeist aus Weichlot, die direkt auf der Transistorfläche aufgebracht sind und sowohl eine elektrische wie auch mechanische Verbindung herstellen. „Die Wärmeverteilung und -ableitung ist ein kritischer Punkt bei Flip- Chip montierten Leistungstransistoren. Sie können die Wärme nur noch über die Bumps abführen, weshalb Temperaturunterschiede von mehreren zehn Kelvin auf dem Transistor entstehen können“, erklärt Zhytnytska.

Um Transistoren für hohe Schaltleistungen realisieren zu können, gruppierten die FBH-Forscher eine Vielzahl von kleineren Transistorzellen in einer Anordnung, die wie ein Schachbrett aussieht. Mit diesem Design wurde die Technologie erfolgreich auf sehr leistungsfähige Transistoren übertragen und nachgewiesen, dass sie grundsätzlich funktioniert. Im Hinblick auf die Wärmeverteilung erwies sich das Schachbrett-Design jedoch als verbesserungsfähig. Deshalb entwickelten Zhytnytska und ihre Kollegen eine achteckige Struktur, bei der die Transistorzellen so um die Bumps gruppiert werden, dass sich die Wärmeableitung verbessert. Die kurze Entfernung der Transistorzellen zum nächsten Bump sorgt dafür, dass die sich einstellende Chiptemperatur möglichst gleichmäßig verteilt und die Wärme deutlich besser abgeführt wird. Die Temperaturdifferenz auf dem Chip verringerte sich um 30 Prozent gegenüber der Schachbrettanordnung. Auch wurde weniger Chipfläche verbraucht, wodurch der Leistungstransistor noch kleiner wurde.

„Für Galliumnitrid-Transistoren ist dieses Design hoch innovativ“, sagt Zhytnytska. „Wir haben das Material erstmals mit einer solch komplexen Anordnung getestet und den Leistungstransistor konsequent in Bezug auf thermische Eigenschaften optimiert.“ Mit dem neuen oktagonalen Design kann der Transistor zudem eine deutlich höhere Leistung pro Fläche erbringen und bietet die Voraussetzungen, die hohen Anforderungen hinsichtlich der Zuverlässigkeit bei Weltraumanwendungen zu erfüllen. Nun arbeitet die Gruppe an der Fertigung eines Prototypen, der dann umfangreiche Tests für den Weltraumeinsatz durchlaufen wird.

Kontakt:
Petra Immerz, Presse- und Öffentlichkeitsarbeit, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Tel.: (030) 6392-2626, immerz@fbh-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Simulation von Energienetzwerken für Strom, Gas und Wärme
19.09.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht MathEnergy: Mathematische Schlüsseltechniken für Energienetze im Wandel
19.09.2017 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie