Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Huckepack-Batterie für Mikrochips: TU Graz-Forscher realisieren neues Batteriekonzept

17.08.2016

Elektrochemikern der TU Graz ist es gelungen, einkristallines Halbleitersilizium als aktive Speicherelektrode in Lithium-Batterien einzusetzen. Dies ermöglicht die integrierte Energieversorgung von Mikrochips mit einer wieder aufladbaren Batterie.

Elektronische Kleingeräte wie Handys, Tablets oder Notebooks sind heute unerlässliche Begleiter durch den Alltag. Im Inneren dieser Geräte überwachen, steuern und regeln integrierte Schaltkreise auf Silizium-Chips die mannigfaltigsten Prozesse.


Die Mikrobatterie ist nur wenige Millimeter groß und erreicht Leistungsstärken, die mit den besten heutzutage erhältlichen Li-Ionenbatteriesystemen konkurrieren können

© Lunghammer – TU Graz

Klare Tendenz in der Mikroelektronik: noch kleiner, mobiler und vielfältiger. Hier liegt die Bedeutung der nun in Scientific Reports veröffentlichten Forschungsergebnisse des Forschungsteams rund um Michael Sternad und Martin Wilkening vom Christian Doppler-Labor für Lithium-Batterien am Institut für Chemische Technologie von Materialien der TU Graz: die on-board Energieversorgung eines Mikrochips könnte das Anwendungsspektrum der Mikroelektronik deutlich erweitern.

Mini-Batterie für Mikrochips

Als Ergebnis mehrjähriger Grundlagenforschung am CD-Labor für Lithium-Batterien an der TU Graz konnte nun gezeigt werden, wie einkristallines Silizium, aus dem der Mikrochip besteht, direkt als Batterieelektrode (Anode) genutzt werden kann. Damit beherbergt der Mikrochip nicht nur die Elektronik, sondern ist gleichzeitig der wesentliche Teil einer Mini-Batterie, die elektrische Energie z.B. zum Senden und Empfangen von Informationen bereitstellt.

„Normalerweise kann man Einkristall-Silizium nicht ohne weiteres als Batteriekomponente verwenden, da es sich bei der Umsetzung mit Lithium stark ausdehnt, Risse bekommt und allmählich zerstört wird“ erklärt Michael Sternad, Mitarbeiter am Christian Doppler-Labor für Lithium-Batterien an der TU Graz. „Wir nutzen direkt das dotierte Halbleitersilizium des Chips. Dazu wird es jedoch vorher gezielt unter Kenntnis der Kristallachsen mikrostrukturiert und dann elektrochemisch in besonderer Weise aktiviert,“ erläutert Michael Sternad.

Leistungsstark und kostengünstig

Neben der enormen Speicherkapazität (mehr als 1000 mAh/g) und einer hohen Stromeffizienz (Coulomb Effizienz >98.8 %) der Siliziumelektrode, war für die Forschenden insbesondere die Tatsache überraschend, dass die kleinen Silizium-Türme, aus denen die Anode der Lithium-Batterie besteht, mehr als 100 volle Lade- und Entladezyklen bei nur wenigen Prozent Kapazitätsverlust überstehen.

Damit übertrifft die elektrochemische Lebensdauer der Mikrobatterie jedenfalls die durchschnittliche Einsatzdauer eines Sensors oder einer Sonde. Martin Wilkening, Leiter des Instituts für Chemische Technologie von Materialien sowie des CD-Labors für Lithium-Batterien zeigt sich begeistert von diesem Mini-Kraftwerk:

„Die Mikrobatterie ist nur wenige Millimeter groß und erreicht Leistungsstärken, die mit den besten heutzutage erhältlichen Li-Ionenbatteriesystemen konkurrieren können. Zudem könnten auf einem Halbleiter-Si-Wafer mehrere tausend Zellen parallelisiert hergestellt werden, so dass Stückpreise von wenigen Cent erreichbar wären.“

Christian Doppler-Labor für Lithium-Batterien: Alterungseffekte, Technologie und Neue Materialien

Das Christian Doppler-Labor für Lithium-Batterien am Institut für Chemische Technologie von Materialien der TU Graz wurde 2012 gegründet und widmet sich unter anderem neuen Konzepten für Lithium-Batterien. Neben Si-Mikrobatterien werden insbesondere Li-Festkörperbatterien untersucht. Unternehmenspartner des CD-Labors sind AVL List GmbH und Infineon Technologies Austria AG.

Die Forschungsergebnisse wurden in Scientific Reports veröffentlicht:
M. Sternad, M. Forster, M. Wilkening, The microstructure matters: breaking down the barriers with single crystalline silicon as negative electrode in Li-ion batteries, Sci. Rep. 6 (2016) 31712. | DOI: 10.1038/srep31712

Kontakt:
Michael STERNAD
Dipl.-Ing. Dr.techn.
TU Graz
Institut für Chemische Technologie von Materialien
CD-Labor für Lithium-Batterien - Alterungseffekte, Technologie und Neue Materialien
Mobil: +43 664 463 2727 | Tel.: +43 316 873 32320
michael@sternad.com

Martin WILKENING
Univ.-Prof. Dr.rer.nat.
TU Graz
Institut für Chemische Technologie von Materialien
CD-Labor für Lithium-Batterien - Alterungseffekte, Technologie und Neue Materialien
Mobil: +43 664 88796957 | Tel.: +43 316 873 32330
wilkening@tugraz.at

Weitere Informationen:

http://www.nature.com/articles/srep31712
http://www.lithium.tugraz.at
http://bit.ly/2bxBBOC

Mag. Barbara Gigler | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Weltweit erste Solarstraße in Frankreich eingeweiht
16.01.2017 | Wissenschaftliche Abteilung, Französische Botschaft in der Bundesrepublik Deutschland

nachricht Greifswalder Plasmaforscher erforschen Nanomaterialien für effiziente Energiespeicherung
13.01.2017 | Leibniz-Institut für Plasmaforschung und Technologie e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie