Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Hauch von Elektronik

08.01.2014
ETH-Forscher entwickeln Elektronikbauteile, die dünner und biegsamer sind als bisherige.

Sie können sich gar um ein einzelnes Haar herumlegen, ohne dass die Elektronik Schaden nimmt. Das eröffnet neue Möglichkeiten für ultradünne, durchsichtige Sensoren, die buchstäblich ins Auge gehen.


Die hauchdünne Elektronikmembran haftet auf verschiedenen Oberflächen.
Bild: Peter Rüegg / ETH Zürich

Niko Münzenrieder taucht ein Blatt eines Ficus' in Wasser, in dem Stücke einer metallisch glänzenden Membran treiben. Mithilfe einer Pinzette schiebt er sorgfältig eines dieser Stückchen auf das Blatt der Zimmerpflanze. Schliesslich hebt er es hoch, und die Folie haftet wie angegossen auf der Blattoberfläche.

Der Postdoc-Forscher demonstriert so, welche besonderen Eigenschaften das von ihm mitentwickelte Elektronikbauteil in Form einer hauchdünnen Membran hat. «Diese neuartigen Dünnfilmtransistoren haften auf verschiedensten Oberflächen und passen sich ideal daran an», erklärt der Physiker.

Im Elektroniklabor von Professor Gerhard Tröster forschen Wissenschaftler schon seit einiger Zeit an flexiblen Elektronikkomponenten wie Transistoren oder Sensoren. Ziel ist, derartige Bausteine in Textilien einzuweben oder auf der Haut aufzubringen, um Gegenstände «smart» zu machen oder bequem zu tragende, unauffällige Sensoren zur Überwachung von verschiedenen Körperfunktionen zu entwickeln.

Anschmiegsam, aber funktionstüchtig

Diesem Ziel sind die Forscher nun mit ihren Dünnfilmbauelementen einen grossen Schritt näher gekommen. Die Arbeit darüber wurde soeben in der Fachzeitschrift «Nature Communications» veröffentlicht. Mit ihrer neuartigen Dünnfilmtechnologie haben sie eine äusserst biegsame funktionstüchtige Elektronik hervorgebracht.

Innerhalb eines Jahres hat Münzenrieder zusammen mit Giovanni Salvatore ein Verfahren entwickelt, das die Herstellung dieser Dünnfilmbauelemente ermöglichte. Die Membran besteht aus Parylen, einem Kunststoff, den die Forscher schichtweise auf eine herkömmliche 2-Zoll-Siliziumscheibe aufdampften. Der Parylenfilm ist maximal ein Tausendstel Millimeter dick – 50mal dünner als ein Haar. In weiteren Arbeitsschritten bauten sie dann mit standardisierten Methoden Transistoren und Sensoren aus Halbleitermaterialien wie Indium-Gallium-Zink-Oxid respektive Leitermaterial wie Gold auf. Danach lösten die Forscher den Parylenfilm mit den darauf enthaltenen Elektronikkomponenten von der Siliziumscheibe ab.

Das so fabrizierte Elektronikbauteil ist äusserst biegsam, anpassungsfähig und – je nach Wahl der Materialien für die Transistoren – durchsichtig. Den theoretisch ermittelten Biegeradius von 50 Mikrometern bestätigten die Forschenden in Versuchen, bei denen sie die Elektronikmembran auf menschliche Haare legten und beobachteten, dass sich die Membran um diese herum genau anpasste. Die auf der Folie aufgebrachten Transistoren, die aufgrund ihrer Bauweise aus keramischen Materialien weniger flexibel sind als das Trägermaterial, funktionierten trotz dieser starken Biegung einwandfrei.

Smarte Kontaktlinse misst Augendruck

Eine mögliche Anwendung für ihre biegsame Elektronik sehen Münzenrieder und Salvatore zum Beispiel bei «smarten» Kontaktlinsen. Für erste Tests brachten die Forscher ihre Dünnfilmtransistoren kombiniert mit Dehnungsmessstreifen auf handelsüblichen Kontaktlinsen auf. Diese setzten sie einem künstlichen Auge auf und untersuchten, ob die Membran und vor allem die Elektronik den Biegeradius des Auges aushielten und weiterhin funktionierten. Tatsächlich zeigten diese Tests, dass derartige smarte Kontaktlinsen funktionstüchtig sind und zur Messung des Augeninnendrucks genutzt werden könnten. Der Augeninnendruck ist ein wichtiger Risikofaktor für das Entstehen eines Glaukoms, dem Grünen Star.

Die Forscher müssen aber auch noch ein paar technische Hürden überwinden, ehe an eine kommerziell verwertbare Lösung gedacht werden kann. So muss der Aufbau der Elektronik auf der Kontaktlinse optimiert werden, um die Effekte der wässrigen Augenumgebung zu berücksichtigen. Ausserdem brauchen Sensoren und Transistoren Energie, wenn auch nur wenig. Dennoch muss diese bis anhin von aussen zugeführt werden. «Im Labor unter dem Mikroskop lässt sich die Folie leicht an die Energieversorgung anschliessen, für eine auf dem Auge sitzende Einheit müsste aber eine andere Lösung gefunden werden», gibt Münzenrieder zu bedenken.

Das Labor von Professor Tröster hat in der Vergangenheit schon mehrere Male mit ausgefallenen Ideen für tragbare Elektronik von sich reden gemacht. So haben die Forschenden Textilien mit eingewobenen Elektronikbauteilen entwickelt oder die Körperfunktionen des Schweizer Skisprungstars Simon Ammann mit Sensoren während seinen Sprüngen überwacht.

Peter Rüegg | ETH Zürich
Weitere Informationen:
http://www.ethz.ch
http://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/01/ein-hauch-von-elektronik.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten