Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Hauch von Elektronik

08.01.2014
ETH-Forscher entwickeln Elektronikbauteile, die dünner und biegsamer sind als bisherige.

Sie können sich gar um ein einzelnes Haar herumlegen, ohne dass die Elektronik Schaden nimmt. Das eröffnet neue Möglichkeiten für ultradünne, durchsichtige Sensoren, die buchstäblich ins Auge gehen.


Die hauchdünne Elektronikmembran haftet auf verschiedenen Oberflächen.
Bild: Peter Rüegg / ETH Zürich

Niko Münzenrieder taucht ein Blatt eines Ficus' in Wasser, in dem Stücke einer metallisch glänzenden Membran treiben. Mithilfe einer Pinzette schiebt er sorgfältig eines dieser Stückchen auf das Blatt der Zimmerpflanze. Schliesslich hebt er es hoch, und die Folie haftet wie angegossen auf der Blattoberfläche.

Der Postdoc-Forscher demonstriert so, welche besonderen Eigenschaften das von ihm mitentwickelte Elektronikbauteil in Form einer hauchdünnen Membran hat. «Diese neuartigen Dünnfilmtransistoren haften auf verschiedensten Oberflächen und passen sich ideal daran an», erklärt der Physiker.

Im Elektroniklabor von Professor Gerhard Tröster forschen Wissenschaftler schon seit einiger Zeit an flexiblen Elektronikkomponenten wie Transistoren oder Sensoren. Ziel ist, derartige Bausteine in Textilien einzuweben oder auf der Haut aufzubringen, um Gegenstände «smart» zu machen oder bequem zu tragende, unauffällige Sensoren zur Überwachung von verschiedenen Körperfunktionen zu entwickeln.

Anschmiegsam, aber funktionstüchtig

Diesem Ziel sind die Forscher nun mit ihren Dünnfilmbauelementen einen grossen Schritt näher gekommen. Die Arbeit darüber wurde soeben in der Fachzeitschrift «Nature Communications» veröffentlicht. Mit ihrer neuartigen Dünnfilmtechnologie haben sie eine äusserst biegsame funktionstüchtige Elektronik hervorgebracht.

Innerhalb eines Jahres hat Münzenrieder zusammen mit Giovanni Salvatore ein Verfahren entwickelt, das die Herstellung dieser Dünnfilmbauelemente ermöglichte. Die Membran besteht aus Parylen, einem Kunststoff, den die Forscher schichtweise auf eine herkömmliche 2-Zoll-Siliziumscheibe aufdampften. Der Parylenfilm ist maximal ein Tausendstel Millimeter dick – 50mal dünner als ein Haar. In weiteren Arbeitsschritten bauten sie dann mit standardisierten Methoden Transistoren und Sensoren aus Halbleitermaterialien wie Indium-Gallium-Zink-Oxid respektive Leitermaterial wie Gold auf. Danach lösten die Forscher den Parylenfilm mit den darauf enthaltenen Elektronikkomponenten von der Siliziumscheibe ab.

Das so fabrizierte Elektronikbauteil ist äusserst biegsam, anpassungsfähig und – je nach Wahl der Materialien für die Transistoren – durchsichtig. Den theoretisch ermittelten Biegeradius von 50 Mikrometern bestätigten die Forschenden in Versuchen, bei denen sie die Elektronikmembran auf menschliche Haare legten und beobachteten, dass sich die Membran um diese herum genau anpasste. Die auf der Folie aufgebrachten Transistoren, die aufgrund ihrer Bauweise aus keramischen Materialien weniger flexibel sind als das Trägermaterial, funktionierten trotz dieser starken Biegung einwandfrei.

Smarte Kontaktlinse misst Augendruck

Eine mögliche Anwendung für ihre biegsame Elektronik sehen Münzenrieder und Salvatore zum Beispiel bei «smarten» Kontaktlinsen. Für erste Tests brachten die Forscher ihre Dünnfilmtransistoren kombiniert mit Dehnungsmessstreifen auf handelsüblichen Kontaktlinsen auf. Diese setzten sie einem künstlichen Auge auf und untersuchten, ob die Membran und vor allem die Elektronik den Biegeradius des Auges aushielten und weiterhin funktionierten. Tatsächlich zeigten diese Tests, dass derartige smarte Kontaktlinsen funktionstüchtig sind und zur Messung des Augeninnendrucks genutzt werden könnten. Der Augeninnendruck ist ein wichtiger Risikofaktor für das Entstehen eines Glaukoms, dem Grünen Star.

Die Forscher müssen aber auch noch ein paar technische Hürden überwinden, ehe an eine kommerziell verwertbare Lösung gedacht werden kann. So muss der Aufbau der Elektronik auf der Kontaktlinse optimiert werden, um die Effekte der wässrigen Augenumgebung zu berücksichtigen. Ausserdem brauchen Sensoren und Transistoren Energie, wenn auch nur wenig. Dennoch muss diese bis anhin von aussen zugeführt werden. «Im Labor unter dem Mikroskop lässt sich die Folie leicht an die Energieversorgung anschliessen, für eine auf dem Auge sitzende Einheit müsste aber eine andere Lösung gefunden werden», gibt Münzenrieder zu bedenken.

Das Labor von Professor Tröster hat in der Vergangenheit schon mehrere Male mit ausgefallenen Ideen für tragbare Elektronik von sich reden gemacht. So haben die Forschenden Textilien mit eingewobenen Elektronikbauteilen entwickelt oder die Körperfunktionen des Schweizer Skisprungstars Simon Ammann mit Sensoren während seinen Sprüngen überwacht.

Peter Rüegg | ETH Zürich
Weitere Informationen:
http://www.ethz.ch
http://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/01/ein-hauch-von-elektronik.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Simulation von Energienetzwerken für Strom, Gas und Wärme
19.09.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht MathEnergy: Mathematische Schlüsseltechniken für Energienetze im Wandel
19.09.2017 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie