Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grünes Licht für die Nanoelektronik - Optischer Schalter aus einzelnen Molekülen entwickelt

31.03.2011
Im Forschungsgebiet Nanophotonik wird das Verhalten von Licht im Nanometerbereich untersucht und manipuliert.

So könnte Licht in Zukunft beispielsweise in optischen Schaltkreisen die Rolle von elektrischen Strömen übernehmen. Auf kleinstem Raum haben diese optischen Schaltkreise das Potenzial, die Leistungsfähigkeit und Arbeitsgeschwindigkeit von elektronischen Schaltungen weit zu übertreffen.

LMU-Physiker unter der Leitung von Professor Philip Tinnefeld, der zwischenzeitlich von der LMU an die TU Braunschweig gewechselt ist, haben nun in einem neuartigen Ansatz gezeigt, wie die Ausbreitungsrichtung von Licht bzw. Lichtenergie auf der Ebene einzelner Moleküle manipuliert werden kann. Dazu platzierten die Biophysiker eine Kaskade von vier verschiedenen Fluoreszenz-Farbstoffmolekülen auf einer DNA-Plattform im Nanometer-Maßstab.

Mithilfe eines sogenannten „Springer“-Farbstoffs gelang es ihnen, die Richtung des Lichtweges bzw. des Energietransfers zu kontrollieren. Der Erfolg dieser Strategie, die im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) entwickelt und von der Deutschen Forschungsgesellschaft gefördert wurde, konnte mit einer neuen Vier-farben-Einzelmolekültechnik sichtbar gemacht werden (JACS 2011).

Um Licht auf der Nanoskala zu kontrollieren, bedarf es neuer optischer Bauteile, die als Drähte und Schalter fungieren. Als eine Art Draht könnte der Energietransfer zwischen einzelnen Farbstoffen wirken. In der Natur gibt es für diesen Transfer bereits ein prominentes Beispiel: In der Photosynthese wird Lichtenergie in Lichtsammelkomplexen zwischen Molekülen transportiert. Das Prinzip dieses sogenannten Fluoreszenz-Resonanzenergietransfers (FRET) nutzte das Team von Philip Tinnefeld, um Licht von Fluoreszenz-Farbstoffmolekül zu Fluoreszenz-Farbstoffmolekül zu leiten. Dazu setzen die Wissenschaftler Farbstoffe ein, die ihr Absorptionsmaximum im blauen, grünen, roten und infraroten Wellenlängenbereich besitzen.

Damit die Moleküle – beispielsweise in künstlichen Lichtschaltkreisen – miteinander wechselwirken können, dürfen sie nur rund fünf Nanometer auseinander liegen. Dies gelingt den Wissenschaftlern mithilfe eines winzigen Steckbrettes, für das sie das Biomolekül DNA als Baustoff verwenden. Zunächst binden sie jedes Farbstoffmolekül an einen kurzen künstlichen DNA-Strang. Diese beladenen Abschnitte und rund 200 weitere kurze DNA-Stränge dienen anschließend als eine Art Heftklammern: Sie helfen einem einzelnen, sehr langen DNA-Faden dabei, sich selbstständig in eine zwei- oder auch dreidimensionale Struktur zu falten. Diese ist derart vordefiniert, dass die Farbstoffmoleküle optimal zueinander gelegen aus diesem „DNA-Teppich“ herausschauen. Dieser ist typischerweise weniger als 100 nm x 100 nm groß. Der gezielte Einsatz dieser molekularen Selbstorganisation und -faltung wird als „DNA-Origami“ bezeichnet, angelehnt an die japanische Papierfalt-Technik.

Im Experiment regen die Biophysiker nun zunächst den blauen „Eingangs“-Farbstoff mit der passenden Lichtwellenlänge an. Dieser wird daraufhin einen Teil der Anregungsenergie mittels FRET als Fluoreszenzstrahlung auf einen nahegelegenen anderen Farbstoff übertragen. Und hier sitzt im wahrsten Sinne des Wortes der Clou des vorgestellten Steckbrett-Designs, der grüne „Springer“-Farbstoff. Denn je nachdem, wo dieser positioniert wird, leitet er die Lichtenergie entweder in Richtung des roten oder in Richtung des infraroten „Ausgangs“-Farbstoffs. Welcher Weg eingeschlagen wurde, zeigt die Farbe des Ausgangssignals.

In diesem neuartigen Ansatz kombinierten die Wissenschaftler um Philip Tinnefeld erstmals die Nutzung von DNA als Trägermaterial mit Vier-Farben Einzelmolekül Spektroskopie, um das Schalten von Energietransfer-Pfaden zu visualisieren. Die DNA-Origami-Objekte bieten grundsätzlich zahlreiche Bindestellen zum Verankern von anderen Molekülen und können somit als molekulares Steckbrett oder „Nano-Platine“ angesehen werden. Die vorgestellte Vier-Farben Spektroskopie mit alternierender Laseranregung kann zudem umfassende Informationen über Objekte auf der Nanoskala liefern, sowohl über ihre Struktur als auch über ihre Wechselwirkungen. Das neue Verfahren eignet sich außerdem für hochsensitive Analytik. Dazu können die Wissenschaftler das System so konstruieren, dass sie über Lichtsignale schon die Bindung einzelner Moleküle einer gesuchten Substanz nachweisen können. (NIM)

Publikation:
„Single-Molecule Four-Color FRET Visualizes Energy-Transfer Paths on DNA Origami”;
Ingo H. Stein, Christian Steinhauer and Philip Tinnefeld;
J. Am. Chem. Soc. 2011, 133, 4193–4195
Ansprechpartner:
Prof. Philip Tinnefeld
Institut für Physikalische und Theoretische Chemie
Technische Universität Braunschweig
p.tinnefeld@tu-braunschweig.de
Tel.: 0531 / 391 - 5330
Ingo Stein
Institut für Angewandte Physik / Biophysik
Ludwig-Maximilians-Universität (LMU) München
ingo.stein@physik.uni-muenchen.de
Tel.: 089 / 2180 - 1438

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de
http://www.nano-initiative-munich.de/press/press-material/t

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie