Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Greifswalder Plasmaforscher erforschen Nanomaterialien für effiziente Energiespeicherung

13.01.2017

Im Januar startete das von der Leibniz-Gesellschaft mit 1,3 Mio. Euro geförderte Forschungsvorhaben CarMON (New Carbon-Metal Oxide Nanohybrids for Efficient Energy Storage and Water Desalination). Das Projekt zur Erforschung neuer effizienter Energiespeicherung und Wasserentsalzung wird in einer Zusammenarbeit des Leibniz-Institutes für Plasmaforschung und Technologie e.V. (INP) mit dem Leibniz-Institut für Neue Materialien Saarbrücken und dem Max-Planck-Institut für Eisenforschung GmbH Düsseldorf realisiert.

Im Rahmen des Projekts wird die Herstellung von Nanomaterialien für die Energiespeicherung in Batterien erforscht. Ziel des Forschungsverbundes ist es, die Struktur dieser Materialien mit charakteristischen Teilchenmaßen in der Größe von einigen Milliardstel eines Meters in Zukunft präzise kontrollieren und reproduzieren zu können.

Dies ist eine Voraussetzung, um solche Verfahren auf den industriellen Fertigungsmaßstab zu übertragen und Energie effizienter zu speichern. Damit ordnet sich das Projekt in die vielfältigen Forschungsanstrengungen einer effizienteren Nutzung von erneuerbaren Energiequellen ein.

Viele der uns heute bekannten Nanomaterialien werden in Herstellungsverfahren unter Verwendung physikalischer Plasmen entwickelt. Plasmen sind ionisierte Gase, die auf Grund ihrer einzigartigen physikalischen Eigenschaften neue Möglichkeiten für die Nanotechnologie und für die Erzeugung von Werkstoffen auf atomarer Ebene bieten.

„In dieses Projekt können die Wissenschaftler des INP ihre Expertise in der Aufklärung der Zusammenhänge zwischen den im Plasma herrschenden Bedingungen und dem erzeugten Material auf der Nanoskala einbringen“, erläutert Dr. Rüdiger Foest, Leiter des Forschungsschwerpunktes Materialien und Oberflächen.

Die Energie und Konzentration der im Plasma erzeugten Atome, Ionen und Moleküle bestimmen im Prozess die Eigenschaften der entstehenden Nanostrukturen. Die Kenntnis dieser Zusammenhänge ermöglicht Dr. Angela Kruth, Leiterin des Projekts, gemeinsam mit dem Projektteam die erforderlichen Strukturen oxidischer Nanopartikel gezielt herzustellen.

Die Industrie setzt hohe Erwartungen in Nanotechnologie. Plasmagestützte Prozesse ermöglichen hier spannende neue Wege. Für den Technologietransfer können sie dringend notwendige Türöffner der Zukunft darstellen. Das INP entwickelt aktuell auch Plasmaprozesse für die Erzeugung von Nanopartikeln und Nanoschichten, welche sich in technischen Komponenten für die Energieumwandlung aus regenerativen Energiequellen wiederfinden.

Das betrifft bedeutsame Technologien wie Brennstoffzellen, Elektrolyseure und die Solartechnik. Zugleich stehen Hochtechnologien, wie unter anderem die Präzisionsoptik, die Halbleitertechnologie oder die Synthese von biokompatiblen Materialien im Fokus der Forschungsinteressen des Instituts.

Stichwort Plasma:
Plasma ist ein (teilweise) ionisiertes Gas, welches aufgrund seiner elektrischen Leitfähigkeit eine Reihe besonderer Eigenschaften aufweist. Wenn auch natürliche Plasmen auf der Erde auf solch exotische Phänomene wie z.B. Blitze oder Nordlichter beschränkt sind, befinden sich 99% der sichtbaren Materie im Universum im Plasmazustand, darunter unsere Sonne und die Sterne. Solche Sternenplasmen werden in Experimenten zur Fusionsforschung auf der Erde nachempfunden. Neben diesem sehr heißen Plasma können technisch auch kalte Plasmen erzeugt werden, für vielfältige Anwendungen in der Oberflächen- und Dünnschichttechnologie oder auch in der Medizintechnik.

Das Leibniz-Institut für Plasmaforschung und Technologie (INP):
Forschung und Entwicklung von der Idee bis zum Prototyp – Mit etwa 176 Wissenschaftler(inne)n, Ingenieur(inn)en und weiteren Fachkräften ist das Greifswalder INP europaweit eine der führenden außeruniversitären Forschungseinrichtungen zu Niedertemperaturplasmen, deren Grundlagen und technischen Anwendungen. Neben der anwendungsorientierten Grundlagenforschung fördert das Leibniz-Institut die Entwicklung plasmagestützter Verfahren und Produkte. Die Themen orientieren sich dabei an den Erfordernissen des Marktes. Damit bietet das INP neben kundenspezifischen Lösungen auf dem Gebiet der Plasmatechnologie auch Serviceleistungen wie Machbarkeitsstudien oder Beratungen an. Derzeit stehen Plasmen für Oberflächen und Materialien, Umwelt und Energietechnik sowie interdisziplinäre Themen in Biologie und Medizin im Mittelpunkt des Interesses. Innovative Produktideen aus der Forschung des INP werden direkt mit der Industrie erforscht oder durch die Ausgründungen des Institutes in marktfähige Produkte und Dienstleistungen transferiert.

Ansprechpartner am Leibniz-Institut für Plasmaforschung und Technologie (INP):
Dr. Angela Kruth
Leiterin des Projekts „CarMON“
Telefon: +49 3834 554 3860
angela.kruth@inp-greifswald.de

Dr. Rüdiger Foest
Forschungsschwerpunktleiter Materialien und Oberflächen
Telefon: +49 3834 554 3835
foest@inp-greifswald.de

Charlotte Giese
Stabsstelle Kommunikation Öffentlichkeitsarbeit
Tel.: +49 3834 554 3897
charlotte.giese@inp-greifswald.de

Weitere Informationen:

http://www.inp-greifswald.de/web3.nsf/index?OpenPage&Eintrag=00F6EFB01F8CAE8...

Charlotte Giese | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Digitale Messtaster von WayCon – höchst präzise und vielseitig einsetzbar
14.11.2017 | WayCon Positionsmesstechnik GmbH

nachricht FAU-Forscher entwickeln neues Materialsystem für effiziente und langlebige Solarzellen
10.11.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie