Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gold und Stahl – schnell und genau analysiert

01.10.2014

Optische Emissionsspektrometer gehören in der Stahlindustrie zur Standardausstattung. Allerdings sind die Geräte bislang recht groß. Ein neuartiger Sensor ermöglicht nun, die Spektrometer um ein Vielfaches zu verkleinern. Weiterer Vorteil: Die Messungen sind genauer und doppelt so schnell wie bisher.

Gold ist teuer. Kunden möchten daher beim Kauf eines Schmuckstücks sichergehen, dass der begehrte Ring oder die Kette auch wirklich aus dem edlen Metall besteht. In Indien müssen Juweliere per Gesetz ein optisches Emissionsspektrometer zur Hand haben: Anhand des Lichtspektrums der einzelnen Bestandteile des Materials prüfen sie Gold auf seine Echtheit.


Emissionsspektrometer erkennen Materialien an ihrem Lichtspektrum. Neuartige Sensoren machen die Prüfgeräte immer kleiner, genauer und schneller.

© Fraunhofer IMS

Die Hauptanwender der Geräte sind allerdings nicht Goldschmiede. In Stahlwerken und Produktionshallen der Automobilindustrie helfen sie den Ingenieuren, die Beschaffenheit des Stahls zu untersuchen und ihn auf seine Bestandteile und seine Qualität hin zu überprüfen. Bislang sind die Geräte allerdings recht groß – zumindest, wenn sie eine gute Auflösung haben sollen.

Forscher des Fraunhofer-Instituts für Mikroelektronische Schaltungen und Systeme IMS entwickelten in Duisburg einen Sensor, mit dem die Optik dieser Geräte deutlich schrumpft. »Waren die hochauflösenden Spektrometer bislang etwa so groß wie eine Waschmaschine, dürften sie mit unserem Sensor nur noch die Größe eines Mikrowellenofens haben«, sagt Werner Brockherde, Abteilungsleiter am IMS. Doch das ist nicht der einzige Vorteil des neuen Sensors: Die Ergebnisse, die er liefert, sind genauer als bisher, und liegen etwa doppelt so schnell vor. Das kann beispielsweise bei der Qualitätskontrolle in der Automobilindustrie wichtig sein.

Zeitliche und örtliche Messung – erstmals in einem Sensor vereint

Um zu verstehen, wie die Forscher das Gerät derart miniaturisieren konnten, muss man zunächst einen Blick in sein Inneres werfen. Soll das Spektrometer beispielsweise ein Stück Stahl untersuchen, erzeugt es in regelmäßigen Abständen Funken. Diese schlagen einige Teilchen aus dem Metall heraus und erzeugen ein farbig leuchtendes Plasma. Das Licht des Plasmas wird in zwei Strahlengänge aufgeteilt, wie bei einem Regenbogen in die einzelnen Wellenlängenbereiche zerlegt und getrennt untersucht:

Im ersten Strahlengang erfassen CCD-Zeilensensoren – lichtempfindliche elektronische Bauelemente – das komplette Spektrum. Dieses verrät, welche Teilchen in welcher Konzentration in dem Plasma umherschwirren, und damit auch, aus welchen Bestandteilen der untersuchte Stahl besteht. Experten sprechen dabei von einer ortsaufgelösten Messung.

Im zweiten Strahlengang werden nur einzelne Spektrallinien erfasst – allerdings so, dass das Gerät das Licht des Plasmas von dem der Funken unterscheiden kann. Bislang laufen die orts- und zeitaufgelösten Messungen getrennt voneinander. »Mit unserem auf Halbleitern basierenden (CMOS) Sensor können wir diese beiden Untersuchungen erstmals vereinen. Wir brauchen also nur noch einen Strahlengang und damit auch nur noch eine Optik«, sagt Brockherde.

Der neue Photodetektor macht das Spektrometer schneller: Er hat eine etwa 100-fach größere Dynamik als herkömmliche Sensoren. Signale im Bereich einiger Mikrovolt kann er in einem Rutsch mit Ausschlägen von einigen hundert Millivolt messen. Bisher waren dazu mehrere Messungen nötig. Die Schnelligkeit der Messung ist allerdings nur ein Vorteil, den diese hohe Dynamik mit sich bringt: »Da wir das komplette Spektrum nun mit einer einzigen Pulsserie messen können, steigt auch die Genauigkeit der Untersuchung«, so Brockherde.
Demonstrator auf der Messe Vision

Einen Demonstrator des Sensors stellen die Forscher auf der Messe Vision vom 4. bis 6. November in Stuttgart vor (Stand 1H74). Auch ein zugehöriges Evaluierungs-Kit können sie interessierten Entwicklern zur Verfügung stellen. »Der Markt der Spektroskopie-Hersteller ist überwiegend in deutscher Hand«, erläutert der Wissenschaftler. »Mit unserem Sensor, der in Deutschland entwickelt und gefertigt wird – und nicht weltweit verfügbar ist – können die Hersteller ihren derzeitigen Wettbewerbsvorteil weiter sichern.«

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2014/Oktober/gold-und-sta...

Werner Brockherde | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie