Gewebenetz fängt Sonnenenergie ein: Neuartige Elektrode für flexible Dünnschicht-Solarzellen

Flexibles Präzisionsgewebe, das in Zusammenarbeit mit der Schweizer Firma Sefar AG zu einer Elektrode für Dünnschicht-Solarzellen entwickelt wurde. Quelle: Sefar AG<br>

Rohstoffknappheit und steigender Verbrauch von seltenen Metallen verteuern zunehmend elektronische Bauteile und Geräte. Eingesetzt werden sie zum Beispiel für transparente Elektroden in Touch-Screen-Anzeigen von Mobiltelefonen, in Flüssigkristallbildschirmen, organischen Leuchtdioden und Dünnschicht-Solarzellen. Das Material der Wahl dafür ist Indium-Zinnoxid (ITO, engl. indium tin oxide), ein leitendes, weitgehend transparentes Mischoxid. Da ITO jedoch relativ teuer ist, ist es für grossflächige Anwendungen wie in Solarzellen unwirtschaftlich.

Suche nach Alternativen

Zwar gibt es Indium-freie transparente Oxide, doch mit zunehmender Nachfrage zeichnen sich auch hier Versorgungsengpässe ab. Zudem bleiben prinzipielle Nachteile wie Brüchigkeit bei Verformung bestehen. Daher werden alternative transparente und leitfähige Beschichtungen intensiv erforscht, wie etwa leitende Polymere, Kohlenstoff-Nanoröhrchen oder Graphen. Kohlenstoff-basierte Elektroden haben jedoch meist einen zu hohen Oberflächenwiderstand und sind somit zu wenig leitfähig. Wird ein metallisches Gitter in die organische Schicht integriert, vermindert sich der Widerstand, aber ebenso die mechanische Stabilität: Wird die Solarzelle gebogen, brechen die Schichten und sind nicht mehr leitend. Die Herausforderung besteht also darin, biegsame und trotzdem stabile leitende Substrate herzustellen, idealerweise in einem kostengünstigen industriellen Rollenverfahren.

Eine Lösung: Gewobene Elektroden

Als eine viel versprechende Möglichkeit stellte sich ein transparentes, flexibles Polymer-Gewebe heraus, das die Empa in einem von der Kommission für Technologie und Innovation KTI finanziell unterstützten Projekt zusammen mit der Sefar AG entwickelt hat. Die auf Präzisionsgewebe spezialisierte Schweizer Firma kann das Gewebe günstig und in grossen Mengen über ein Roll-to-roll-Verfahren ähnlich wie beim Zeitungsdruck produzieren. Für die nötige elektrische Leitfähigkeit sorgen eingewobene Metallfäden. In einem zweiten Prozessschritt wird dann das Gewebe in eine inerte Plastikschicht eingebettet, ohne dass dabei die Metallfäden ganz abgedeckt und elektrisch isoliert werden. Die so erhaltene Elektrode ist transparent, stabil und doch flexibel. Darauf brachten Empa-Forschende dann organische Solarzellen als Schichtsystem auf. Deren Effizienz ist vergleichbar mit herkömmlichen ITO-basierten Zellen; zudem ist die Gewebeelektrode bei Verformung deutlich stabiler als kommerziell erhältliche, flexible Plastiksubstrate, auf die ITO als dünne leitfähige Schicht aufgetragen ist.

Literaturhinweis
William Kylberg, Fernando Araujo de Castro, Peter Chabrecek, Uriel Sonderegger, Bryan Tsu-Te Chu, Frank Nüesch and Roland Hany: Woven Electrodes for Flexible Organic Photovoltaic Cells, Adv. Mater. 2011, 23, 1015-1019, doi: 10.1002/adma.201003391
Weitere Informationen
Dr. Roland Hany, Funktionspolymere, +41 58 765 40 84, roland.hany@empa.ch

Media Contact

Sabine Voser EMPA

Weitere Informationen:

http://www.empa.ch

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer