Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Gesalzene“ Katalysatoren vereinfachen die Speicherung erneuerbarer Energien

01.07.2013
Wind- und Solarkraftwerke erzeugen oftmals mehr Strom als gebraucht wird.

Deshalb ist es wichtig, diese Energien so zu speichern, dass man sie unkompliziert und schnell wieder nutzbar machen kann. Als vielversprechende Technik gilt das Speichern von Wasserstoff in Form von Methanol. Dazu benötigt man allerdings einen leistungsfähigen Reaktionsbeschleuniger, um den Wasserstoff wieder zurückzugewinnen, wenn die Energie benötigt wird.

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt Platin-Katalysatoren mit einer besonderen Beschichtung aus geschmolzenen, basischen Alkali-Salzen entwickelt.

Diese „gesalzenen“ Katalysatoren beschleunigen die Wasserstofffreisetzung aus Methanol stark und erhöhen die Selektivität der Reaktion drastisch. Ihre Forschungsergebnisse haben die Wissenschaftler in der renommierten Fachzeitschrift „Angewandte Chemie“ (Int. Ed. 2013, 52(19), 5028-5032) veröffentlicht.

Die Schwankungen der produzierten Energiemengen sind ein zentrales Problem bei der Nutzung von erneuerbaren Quellen für die Strom­erzeugung: Strom fließt eben nur dann, wenn die Sonne scheint oder der Wind weht. Wann wie viel Energie zur Verfügung steht, lässt sich schwer vorhersehen. Eine Lösung für das Problem ist es, einmal gewonnene Energie in Form von Wasserstoff auf Methanolbasis zu speichern: Mit dem erzeugten Strom wird zunächst Wasser in einer einfachen chemischen Reaktion – der Elektrolyse – in Wasserstoff und Sauerstoff aufgespalten.

In einem zweiten Schritt lässt man den Wasserstoff dann mit Kohlendioxid reagieren, es entstehen Methanol und Wasser. Das flüssige Methanol – ein Alkohol – kann in Tanks aufbewahrt werden. Zu einem späteren Zeitpunkt lässt sich der Wasserstoff wieder freisetzen und zum Beispiel in einer Brennstoffzelle nutzen.

Den Vorgang, bei dem der Wasserstoff aus Methanol freigesetzt wird, nennt man Dampfreformieren. Der Schritt ist im Prinzip eine Umkehrung der Methanol-Bildungsreaktion. Das produzierte Gas darf jedoch nur eine sehr geringe Menge an Kohlenmonoxid enthalten, da dieses Gas in größeren Mengen als Gift für den Katalysator der nachgeschalteten Brennstoffzelle wirkt. Damit die Methanol-Zersetzung auch in kleinen und dezentralen Anlagen wirtschaftlich durchführbar ist, soll der verwendete Katalysator bei möglichst niedrigen Temperaturen effektiv arbeiten.

Die Teams um Prof. Dr. Peter Wasserscheid und Prof. Dr. Jörg Libuda von der FAU haben jetzt gemeinsam einen solchen verbesserten Katalysator entwickelt. Es handelt sich dabei um Platin-Nanopartikel, die auf einem Träger aus Aluminiumoxid aufgebracht sind. Der entscheidende Kniff: Die Oberfläche ist mit einem dünnen Film eines basischen Salzes beschichtet.

Flüssige Salze verdampfen unter den gewählten Reaktionsbedingungen nicht, so dass sie während der Dampfreformierung auf der Katalysatoroberfläche verbleiben und die aktiven Metallzentren dauerhaft aktivieren. Die Salzbeschichtung führt dazu, dass gebildeter Wasserstoff schnell aus der Reaktionszone entfernt wird und weiteres Methanol schneller umgesetzt werden kann. Zum anderen ist das Salz hygroskopisch, das heißt, es zieht Wasser an und stellt damit Wasser, das für die Reaktion gebraucht wird, an den aktiven Stellen des Katalysators zur Verfügung. Die Alkali-Ionen sorgen für eine stärkere Bindung des Zwischenprodukts Kohlenmonoxid am Katalysator, so dass sich die Wahrscheinlichkeit einer Weiterreaktion zu Kohlendioxid erhöht. Im Vergleich zum unbeschichteten Material zeigt der beschichtete Katalysator eine deutlich höhere katalytische Aktivität sowie eine sehr deutlich verbesserte Selektivität. Unter vergleichbaren Bedingungen wird die Selektivität zu Kohlendioxid und Wasserstoff von 60 Prozent auf über 99 Prozent durch die Salzbeschichtung erhöht.

Die Wissenschaftler
Prof. Dr. Peter Wasserscheid leitet den Lehrstuhl für Chemische Reaktionstechnik an der FAU. Er ist Sprecher des Bereichs „Katalytische Materialien“ des Erlanger Exzellenzclusters „Engineering of Advanced Materials“ und bearbeitet einen „Advanced Investigator Grant“ des Europäischen Forschungsrats zum Thema „Dehydrierkatalyse mit salzbeschichteten Katalysatoren“ in dessen Rahmen die beschriebenen Untersuchungen durchgeführt wurden.

Prof. Dr. Jörg Libuda ist Professor für Physikalische Chemie an der FAU. Er leitet mehrere Teilprojekte des Erlanger Exzellenzclusters „Engineering of Advanced Materials“ sowie andere Projekte und Netzwerke auf nationaler und europäischer Ebene. Den Schwerpunkt seiner wissenschaftlichen Arbeit bilden Modellstudien und spektroskopische Untersuchungen an energierelevanten Katalysatoren und Materialien.
Weitere Informationen für die Medien:
Prof. Dr. Peter Wasserscheid
Tel. 09131/85-27420, wasserscheid@crt.cbi.uni-erlangen.de

Prof. Dr. Jörg Libuda
Tel. 09131/85-27308, joerg.libuda@fau.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics