Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gelungener Technologietransfer: UV-Photodioden schließen Lücke in internationalen Märkten

01.04.2011
UV-Photodioden auf der Basis von Siliziumcarbid (SiC) sind zentrale Komponenten in einer Vielzahl von Anwendungen, von der Prozessüberwachung bis zu biomedi-zinischen Analysen. Durch die enge Zusammenarbeit von Forschung und Industrie ist es gelungen, eine wichtige Lücke in der Versorgung mit diesen Chips zu schließen. Die nun verfügbaren SiC-UV-Photodioden gehören zu den weltweit leistungsfähigsten.

SiC-basierte Photodetektoren liefern vor Ort wichtige qualitative und quantitative Informationen über die eingesetzte UV-Strahlung. Sie werden unter anderem bei der Überwachung und Steuerung von Anlagen zur UV-Desinfektion eingesetzt, um etwa Luft oder Wasser zu entkeimen, zur UV-Flammenüberwachung sowie zur Härtung von Lacken und Klebstoffen.


UV-SiC-Photodiode
Foto: FBH/schurian.com

Die im Rahmen einer Kooperation des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) und des Leibniz-Instituts für Kristallzüchtung (IKZ) mit dem Berliner Unternehmen sglux Sol Gel Technologies GmbH entwickelten SiC-UV-Photodioden gehören zu den leistungsfähigsten derzeit erhältlichen Halbleiter-Detektoren im UV-Bereich von 200 nm bis 380 nm. Sie zeichnen sich insbesondere durch ihre hohe „visible blindness“ von >1010 aus – damit sind sie unempfindlich für sichtbare Strahlung. Mit ihrem sehr niedrigen Dunkelstrom von
Dunkelstrom fließt auch bei Abwesenheit von UV-Strahlung und ist deshalb bei geringer Bestrahlung störend. Die Dioden zeigen darüber hinaus eine große Strahlungsfestigkeit, das heißt sie bleiben auch bei langer Bestrahlung stabil. Zudem schließen sie eine wichtige Lücke, die entstanden war, als der weltweit einzige kommerzielle Hersteller derartiger Photodioden seine Produktion einstellte. Damit stand international kein gleichwertiger Ersatz zur Verfügung.

Im Rahmen des Berliner Förderprogrammes Transfer BONUS wurde nun der Herstellungsprozess der UV-SiC-Photodioden erfolgreich von 2- auf 3-Zoll-Wafer übertragen. Dies wurde notwendig, weil 2-Zoll-Wafer nicht mehr kommerziell verfügbar sind und ermöglicht gleichzeitig, höhere Stückzahlen kosteneffizient zu produzieren. Durch die bereits heute sehr große Nachfrage erwartet sglux für das laufende Jahr signifikante Umsatzsteigerungen und wachsende Mitarbeiterzahlen. Diese Entwicklung ist zugleich ein Beispiel für erfolgreichen Technologietransfer.
Die Technologie im Detail
Eine Photodiode ist ein Halbleiter-Bauelement, welches Licht – hier im ultravioletten Spektralbereich – durch den inneren Photoeffekt in elektrische Spannung oder elektrischen Strom umwandelt. Dieser Effekt basiert auf einem durch Kristallwachstum (Epitaxie) erzeugten p-n-Übergang. Ein solcher Materialübergang entsteht in Halbleiterkristallen zwischen Bereichen mit verschiedener Dotierung. Bei der Dotierung werden unterschiedliche Fremdatome in das Halbleitermaterial eingebracht, die die Leitfähigkeit des Ausgangsmaterials gezielt verändern. Die spektrale Empfindlichkeit einer Photodiode hängt von der elektronischen Struktur des verwendeten Halbleitermaterials ab. Für einen Einsatz im Bereich von 200 nm bis 380 nm ist einkristallines SiC besonders gut geeignet.

Die Entwicklung der SiC-Photodioden wurde vom Bundesministeriums für Wirtschaft und Technologie (Zentrales Innovationsprogramm Mittelstand ZIM, KF2194601DB9) gefördert. Dazu wurden Epitaxieschichten am IKZ auf n-dotierten SiC-Substraten gewachsen. Die Schichtdicken lagen zwischen 0,15 µm und 5 µm und wurden mit einer homogenen, schichtspezifischen p- und n-Dotierung zunächst auf 2-Zoll-Wafern abgeschieden. Dieser Epitaxieprozess wurde im nun abgeschlossenen Folgeprojekt auf 3-Zoll-Wafer übertragen. Anschließend wurden die 2- bzw. 3-Zoll-Wafer am FBH prozessiert und durch sglux aufgebaut. Die besonderen Herausforderungen am FBH bestanden in der Entwicklung von Strukturierungsverfahren und der elektrischen Kontaktierung von p- und n-dotierten SiC-Schichten. Es wurden Ätzrezepte sowohl für flache Ätzungen (zur Entfernung der p+-Deckschicht) wie auch für tiefe Ätzungen (zur elektrischen Isolation der Bauelemente) entwickelt.

Kontakt:
Petra Immerz, M.A.
Referentin Kommunikation & Public Relations
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. 030.6392-2626
E-Mail petra.immerz@fbh-berlin.de
Hintergrundinformationen – das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der welt¬weit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikro¬wellen¬technik und Opto¬elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Inno¬vationen in den gesell-schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Laser¬systeme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwen¬dungsfelder reichen von der Medizin-technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten¬kommu¬nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunk¬systeme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikro¬¬wellen¬plasmaquellen mit Nieder-spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen¬arbeit des FBH mit Industriepartnern und Forschungs-einrichtungen garantiert die schnelle Umsetzung der Ergeb¬nisse in praktische Anwendungen. Das Institut beschäftigt 220 Mitarbeiter und hat einen Etat von 21 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

www.fbh-berlin.de

Hintergrundinformationen – das IKZ
Das Leibniz-Institut für Kristallzüchtung (IKZ) des Forschungsverbundes Berlin e.V. arbeitet an den wissenschaftlich-technischen Grundlagen der Kristallzüchtung von Materialien, u.a. für die Mikro-, Opto- und Leistungselektronik, Photovoltaik, Optik, Lasertechnik und Sensorik. Für Partner aus Forschung und Industrie werden Kristalle und Verfahren entwickelt und bereitgestellt.
Hintergrundinformationen – sglux
Die sglux SolGel Technologies GmbH, Berlin, entwickelt, produziert und vertreibt optische und elektronische Produkte zur Messung, Steuerung und Kontrolle von UV-Strahlung. Sie wurde 2003 gegründet und beschäftigt 5 Mitarbeiter. Die Mehrzahl der vom Unternehmen hergestellten Instrumente und Anlagen basieren auf SiC-Photodioden.

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie